EVERYTHING YOU NEED
TO BUILD REAL PROJECTS
WITH REDUX

&2

THE COMPLETE REDUX BOOK

BORIS DINKEVICH
ILYA GELMAN

The Complete Redux Book
Everything you need to build real projects with Redux

Ilya Gelman and Boris Dinkevich
This book is for sale at http://leanpub.com/redux-book

This version was published on 2017-01-30

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2017 Ilya Gelman and Boris Dinkevich

http://leanpub.com/redux-book
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Ilya Gelman and Boris Dinkevich by spreading the word about this book on Twitter!
The suggested tweet for this book is:

Time to learn Redux!

The suggested hashtag for this book is #ReduxBook.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#ReduxBook

http://twitter.com
https://twitter.com/intent/tweet?text=Time%20to%20learn%20Redux!
https://twitter.com/search?q=%23ReduxBook
https://twitter.com/search?q=%23ReduxBook

Contents

Should I Read This Book? 1
HowtoRead ThisBook 2
Acknowledgements L 3
Code Repository L 4
Part 1. IntroductiontoRedux L Lo 5
Chapter 1. Core Concepts of FluxandRedux 6
What Is Flux? e 6
Reduxand Flux 8
Redux Terminology 10
General Conceptso 12
Reduxand React 14
Basic Redux Implementation, 15
Summary 22
Chapter 2. Your First Redux Application 23
Starter Project L. 23
Our First Application 25
Setting Up the Store 27
Adding Recipes 28
Adding Ingredients L 30
Structuringthe Code L 31
A Closer Look at Reducers 31
Handling Typos and Duplicates 33
Simple UL. o 34
Logging e 36
Getting Data from the Server L Lo 37
Summary 40
Part 2. Real World Usage 41

Chapter 3. State Management L 42

CONTENTS

The Concept of Separation 42
StateasaDatabase 45
Keeping a Normalized State 47
Persisting State 50
Real-World State 51
Summary 53
Chapter 4. Server Communication. 54
Using Promises in Action Creators 54
APTMiddleware 55
Moving Code from Action Creators 56
Using the API Middleware 57
Error Handling e 58
Loading Indicator (Spinner) 59
Dynamic Action Types e 60
Authentication 62
More Extensions 62
Chaining APIs 63
Canceling APTRequests 67
Summary 69
Chapter 5. WebSockets 70
Basic Architecture L 70
Redux Linko e 70
Code Implementation 71
Complete WebSocket Middleware Code, 76
Authentication 77
Summary 80
Chapter 6. Tests e 81
Test Files and Directories 81
Testing Action Creators 82
Async Action Creators L e 86
Reducer Tests. e 90
Testing Middleware 98
Integration Tests L 107
Summary 109
Part 3. Advanced Concepts 110
Chapter 7. The Store 111
CreatingaStore e 111
Decorating the Store 116

Summary e e 123

CONTENTS

Chapter 8. Actions and Action Creators 124
Passing Parameters to Actions L L L o 125
Action Creators e e 125
Flux Standard Actions 127
String Constants 129
Testing Action Creators 131
redux-thunk L 132
redux-actions 137
Summary 142

Chapter 9. Reducers L 143
Reducersin Practice 143
Avoiding Mutations 149
Ensuring Immutabilityo Lo Lo 155
Higher-Order Reducers 157
Testing Reducers L 158
Summary e 158

Chapter 10. Middleware 159
Understanding next() 160
Our First Middleware 160
Async ACtionS 162
Using Middleware for Flow Control 165
Other Action Types o e 167
Difference Between next() and dispatch() 168
Parameter-Based Middleware o 169
How Are Middleware Used? 170
Summary 171

Further Reading 172
Resource Repositories L 172
Useful Libraries o e 172

Courses and Tutorials 173

Should | Read This Book?

There are many tutorials and blog posts about Redux on the Internet. The library also has great
official documentation. This book isn’t supposed to be either a tutorial or documentation. The goal
is to provide a methodical explanation of Redux core concepts and how those can be extended and
used in large and complex Redux applications.

As a frontend consultancy, we help dozens of companies build great projects using Redux. Many
projects face the same problems and ask the same questions. How should we structure the
application? What is the best way to implement server communication? What is the best solution
for form validation? Where should we handle side effects? How will Redux benefit our applications?

This book is intended to serve as a companion for developers using Redux on a daily basis. It aims to
give answers to many of the above questions and provide solutions to the most common problems
in real-world applications. It can be used to learn Redux from the ground up, to better understand
the structure of a large application, and as a reference during development.

The book is structured in a way that doesn’t force the reader to read it start to finish but rather
allows you to skip parts and come back to them when you face the problem at hand or have free
time to deepen your knowledge. We love Redux, and we have tried to share our excitement about it
in this book. We hope that you will find it useful.

How to Read This Book

While Redux in itself is a small library, the underlying concepts and the ecosystem around it are
large and complex. In this book we cover the core and common concepts and methods a developer
needs to work with Redux on both small and large-scale applications.

The book is separated into three parts. In the first part you will learn the basics of Redux. Chapter
1 covers the core concepts behind Redux, introducing the different “actors” and how it is built. In
Chapter 2, we build an example project step by step; here, you will learn how to use Redux in a
project.

The second part of the book is about examples and use cases from real applications. Redux has
a great ecosystem, and there are a lot of tips, tricks, and libraries that can be applied to many
projects of different scale. We provide you with solutions for common problems including server
communications, authorization, internationalization, routing, forms, wizards, and more.

The third part is a deep dive into Redux usage. It is separated into chapters by Redux entity types:
actions, middleware, reducers, and the store and store enhancers. The chapters in this section include
advanced explanations of Redux internals and how to properly use them in complex scenarios, and
they are a must-read for anyone considering building large applications with Redux.

It is highly recommended that you start by reading the first part as a whole. Even if you already have
knowledge of Redux and have used it, the opening chapters will clarify all the underlying concepts
and lay down the groundwork for the code we will use throughout the second and third parts of the
book.

No matter who you are—an explorer learning about Redux for fun, or a hard-working professional
who needs to solve real problems fast—this book will provide new ideas and insights to help you on
your path.

Acknowledgements

Writing a technical book on a popular JavaScript library nowadays isn’t a simple task. New
techniques, best practices and opinions keep popping up every other week. Combined with daily
job and a family makes it even harder. The only way we could succeed is with a help from other
awesome people along the way.

To Redux creators, Dan Abramov and Andrew Clark, as well as to many contributors to Redux and
its ecosystem, thank you for improving data management and making this book relevant.

To our technical copyeditor, Rachel Head', thank you so much for fixing our English and making
this book more understandable.

To all our colleagues at 500Tech?, thanks for being awesome and making us feel good everyday.

And obviously thank you, our dear reader, for deciding to spend your time and money on reading
this book. We hope you enjoy reading it as much as we did writing it.

Boris & Ilya

"https://fr.linkedin.com/in/rachel-head-a45258a2
®http://500tech.com

https://fr.linkedin.com/in/rachel-head-a45258a2
http://500tech.com/
https://fr.linkedin.com/in/rachel-head-a45258a2
http://500tech.com/

Code Repository

The code samples from this book are available in the book repository on Github and should work

in all modern browsers.

https://github.com/redux-book

Part 1. Introduction to Redux

Chapter 1. Core Concepts of Flux and
Redux

Penicillin, x-rays, and the pacemaker are famous examples of unintended discoveries®. Redux, in a
similar way, wasn’t meant to become a library, but turned out to be a great Flux implementation.
In May 2015, one of its authors, Dan Abramov*, submitted a talk to the ReactEurope conference
about “hot reloading and time travel” He admits he had no idea how to implement time travel at
that point. With some help from Andrew Clark® and inspired by some elegant ideas from the EIm®
language, Dan eventually came up with a very nice architecture. When people started catching on
to it, he decided to market it as a library.

In less than half a year, that small (only 2 KB) library became the go-to framework for React
developers, as its tiny size, easy-to-read code, and very simple yet neat ideas were much easier to
get to grips with than competing Flux implementations. In fact, Redux is not exactly a Flux library,
though it evolved from the ideas behind Facebook’s Flux architecture. The official definition of
Redux’ is a predictable state container for JavaScript applications. This simply means that you store
all of your application state in one place and can know what the state is at any given point in time.

What Is Flux?

Before diving into Redux, we should get familiar with its base and predecessor, the Flux architecture.
“Flux” is a generic architecture or pattern, rather than a specific implementation. Its ideas were
first introduced publicly by Bill Fisher and Jing Chen at the Facebook F8 conference in April 2014.
Flux was touted as redefining the previous ideas of MVC (Model-View—-Controller) and MVVM
(Model-View—-ViewModel) patterns and two-way data binding introduced by other frameworks by
suggesting a new flow of events on the frontend, called the unidirectional data flow.

In Flux events are managed one at a time in a circular flow with a number of actors: dispatcher,
stores, and actions. An action is a structure describing any change in the system: mouse clicks,
timeout events, Ajax requests, and so on. Actions are sent to a dispatcher, a single point in the
system where anyone can submit an action for handling. The application state is then maintained
in stores that hold parts of the application state and react to commands from the dispatcher.

*http://www.businessinsider.com/these- 10-inventions-were-made-by-mistake-2010-11?0p=1&IR=T
“http://survivejs.com/blog/redux-interview/

*https://twitter.com/acdlite

®http://elm-lang.org

"http://redux.js.org/

http://www.businessinsider.com/these-10-inventions-were-made-by-mistake-2010-11?op=1&IR=T
http://survivejs.com/blog/redux-interview/
https://twitter.com/acdlite
http://elm-lang.org/
http://redux.js.org/
http://www.businessinsider.com/these-10-inventions-were-made-by-mistake-2010-11?op=1&IR=T
http://survivejs.com/blog/redux-interview/
https://twitter.com/acdlite
http://elm-lang.org/
http://redux.js.org/

Chapter 1. Core Concepts of Flux and Redux 7

Here is the simplest Flux flow:

1.
2.
3.
4.
5.
6.

Stores subscribe to a subset of actions.

An action is sent to the dispatcher.

The dispatcher notifies subscribed stores of the action.
Stores update their state based on the action.

The view updates according to the new state in the stores.
The next action can then be processed.

7~
% PATG—M ER

5
\ g

7~
N

Flux overview

This flow ensures that it’s easy to reason about how actions flow in the system, what will cause the
state to change, and how it will change.

Consider an example from a jQuery or Angular]S application. A click on a button can cause multiple
callbacks to be executed, each updating different parts of the system, which might in turn trigger
updates in other places. In this scenario it is virtually impossible for the developer of a large
application to know how a single event might modify the application’s state, and in what order
the changes will occur.

In Flux, the click event will generate a single action that will mutate the store and then the view. Any
actions created by the store or other components during this process will be queued and executed
only after the first action is done and the view is updated.

Facebook’s developers did not initially open-source their implementation of Flux, but rather released
only parts of it, like the dispatcher. This caused a lot of open-source implementations to be built by
the community, some of them significantly different and some only slightly changing the original

Chapter 1. Core Concepts of Flux and Redux 8

patterns. For example, some moved to having multiple dispatchers or introduced dependencies
between stores.

o Dmitri Voronianski has a good comparison of various Flux implementations on GitHub®.

Redux and Flux

While Redux derives from Flux concepts, there are a few distinctions between the two architectures.
In contrast to Flux, Redux only has a single store that holds no logic by itself. Actions are dispatched
and handled directly by the store, eliminating the need for a standalone dispatcher. In turn, the store
passes the actions to state-changing functions called reducers, a new type of actor added by Redux.

REDUCERS

Dispatcher out, reducers in

To better understand Redux, let’s imagine an application that helps us manage a recipe book. The
Redux store is where the recipe book itself will be saved, in a structure that might be a list of recipes
and their details.

The app will allow us to perform different actions like adding a recipe, adding ingredients to a
recipe, changing the quantity of an ingredient, and more. To make our code generic, we can create a
number of services. Each service will know how to handle a group of actions. For example, the book
service will handle all the add/remove recipe actions, the recipe service will handle changing recipe
information, and the recipe-ingredients service will handle the actions to do with ingredients. This
will allow us to better divide our code and in the future easily add support for more actions.

To make it work, our store could call each of our services and pass them two parameters: the current
recipe book and the action we want to perform. Each service in turn will modify the book if the
action is one it knows how to handle. Why pass the action to all the services? Maybe some actions

8https://github.com/voronianski/flux-comparison

https://github.com/voronianski/flux-comparison
https://github.com/voronianski/flux-comparison

Chapter 1. Core Concepts of Flux and Redux 9

affect more than one service. For example, changing the measurements from grams to ounces will
cause the ingredients service to recalculate the amounts and the recipe service to mark the recipe as
using imperial measurements. In Redux, these services are the reducers.

We might want to add another layer, the middleware. Every action will be first passed through a list
of middleware. Unlike reducers, middleware can modify, stop, or add more actions. Examples might
include: a logging middleware, an authorization middleware that checks if the user has permissions
to run the action, or an API middleware that sends something to the server.

This simple example shows the base of Redux. We have a single store to control the state, actions to
describe the changes we want to make, reducers (services, in our example) that know how to mutate
the state based on the requested action, and middleware to handle the housekeeping tasks.

What makes Redux special, and sometimes hard to understand, is that reducers never change the
state (in our case, the recipe book), since it is immutable. Instead, the reducers must create a new
copy of the book, make the needed changes to the copy, and return the new, modified book to the
store. This approach allows Redux and the view layers to easily do change detection. In later chapters
we will discuss in detail why and how this approach is used.

It is important to note that the whole application state is kept in a single location, the store. Having a
single source of data provides enormous benefits during debugging, serialization, and development,
as will become apparent in the examples in this book.

ACTION

< %

MIDDLEWARE

Redux overview

<N O O b W N =

© 00 9 O U b W N =

Chapter 1. Core Concepts of Flux and Redux 10

Redux Terminology

Actions and Action Creators

The only way for an application to change the state is by processing actions. In most cases, actions in
Redux are nothing more than plain JavaScript objects passed to the store that hold all the information
needed for the store to be able to modify the state:

Example of an action object

{
type: 'INCREMENT',

payload: {

counterId: 'main',

amount: -10

Since these objects might have some logic and be used in multiple places in an application, they are
commonly wrapped in a function that can generate the objects based on a parameter:

A function that creates an action object

function incrementAction(counterId, amount) {
return {
type: 'INCREMENT',
payload: {
counterlId,

amount

b
};

As these functions create action objects, they are aptly named action creators.

Reducers

Once an action is sent to the store, the store needs to figure out how to change the state accordingly.
To do so, it calls a function, passing it the current state and the received action:

B W N -

© 00 N O U b W N =

Y
(]

Chapter 1. Core Concepts of Flux and Redux 11

A function that calculates the next state

function calculateNextState(currentState, action) {

return nextState;

This function is called a reducer. In real Redux applications, there will be one root reducer function
that will call additional reducer functions to calculate the nested state.

A simple reducer implementation

function rootReducer(state, action) {
switch (action.type) {

case 'INCREMENT':

return { ...state, counter: state.counter + action.payload.amount };
default:
return state;
}
}
Reducers never modify the state; they always create a new copy with the needed modifi-
cations.
Middleware

Middleware is a more advanced feature of Redux and will be discussed in detail in later chapters.
The middleware act like interceptors for actions before they reach the store: they can modify the
actions, create more actions, suppress actions, and much more. Since the middleware have access to
the actions, the dispatch() function, and the store, they are the most versatile and powerful entities
in Redux.

Store

Unlike many other Flux implementations, Redux has a single store that holds the application
information but no user logic. The role of the store is to receive actions, pass them through all
the registered middleware, and then use reducers to calculate a new state and save it.

When it receives an action that causes a change to the state, the store will notify all the registered
listeners that a change to the state has been made. This will allow various parts of the system, like
the UL to update themselves according to the new state.

<N O O & W N =

Chapter 1. Core Concepts of Flux and Redux 12

General Concepts

Redux is about functional programming and pure functions. Understanding these concepts is crucial
to understanding the underlying principles of Redux.

Functional programming has become a trendy topic in the web development domain lately, but it
was invented around the 1950s. The paradigm centers around avoiding changing state and mutable
data—in other words, making your code predictable and free of side effects.

JavaScript allows you to write code in a functional style, as it treats functions as first-class objects.
This means you can store functions in variables, pass them as arguments to other functions, and
return them as values of other functions. But since JavaScript was not designed to be a functional
programming language per se, there are some caveats that you will need to keep in mind. In order
to get started with Redux, you need to understand pure functions and mutation.

Pure and Impure Functions

A pure function returns values by using only its arguments: it uses no additional data and changes
no data structures, touches no storage, and emits no external events (like network calls). This means
that you can be completely sure that every time you call the function with the same arguments, you
will always get the same result. Here are some examples of pure functions:

An example of a pure function

function square(x) {
return x * x;

}

Math.sin(y);

arr.map((item) => item.id);

If a function uses any variables not passed in as arguments or creates side effects, the function is
impure. When a function depends on variables or functions outside of its lexical scope, you can never
be sure that the function will behave the same every time it’s called. For example, the following are
impure functions:

<N O O B W N =

O = W N =

O b W N =

Chapter 1. Core Concepts of Flux and Redux 13

An example of an impure function

function getUser(userld) ({
return UsersModel . fetch(userld).then((result) => result);

Math.random();

arr.map((item) => calculate(item));

Mutating Objects

Another important concept that often causes headaches for developers starting to work with Redux
is immutability. JavaScript has limited tooling for managing immutable objects, and we are often
required to use external libraries.

Immutability means that something can’t be changed, guaranteeing developers that if you create an
object, it will have the same properties and values forever. For example, let’s declare a simple object
as a constant:

Object defined as constant in JavaScript

const colors = {
red: '#FF0O00Q',
green: '#QOFF0O',
blue: '#QQVOFF'

};

Even though the colors object is a constant, we can still change its content, as const will only check
if the reference to the object is changed:

JavaScript allows changes of const defined objects

colors = {};
console.log(colors);

colors.red = '#FFFFFF';
console.log(colors.red);

Try writing this in the developer console. You will see that you can’t reassign an empty object to
colors, but you can change its internal value.

To make the colors object appear immutable, we can use the Ob ject . freeze() method:

O = W N =

©O© 00 N O U b W N =

[Gy
D W N », O

Chapter 1. Core Concepts of Flux and Redux 14

Making a plain object immutable

Object. freeze(colors);

colors.red = '#Q00VOO';

console.log(colors.red);

The value of the red property will now be '#FFFFFF'. If you thought that the value should be
'#FFQ000 ', you missed that we changed the red property before we froze the object. This is a good
example of how easy it is to miss this kind of thing in real applications.

Here, once we used Object. freeze(), the colors object became immutable. In practice things
are often more complicated, though. JavaScript does not provide good native ways to make data
structures fully immutable. For example, Ob ject . freeze() won’t freeze nested objects:

Object.freeze() does not freeze nested objects

const orders = {

bread: {
price: 10

},

milk: {
price: 20

}

}s
Object. freeze(orders);
orders.milk.price -= 15;

console.log(orders.milk.price);

To work around the nature of our beloved language, we have to use third-party libraries like deep-
freeze® or ImmutableJS*°. We will talk about different immutable libraries later in the book.

Redux and React

Redux started out as a companion to React, but has started to gather a major following with other
frameworks like Angular. At its base Redux is fully framework-agnostic, and it can easily be used
with any JavaScript framework to handle state and changes.

*https://github.com/substack/deep-freeze
Ohttps://facebook.github.io/immutable-js/

https://github.com/substack/deep-freeze
https://github.com/substack/deep-freeze
https://facebook.github.io/immutable-js/
https://github.com/substack/deep-freeze
https://facebook.github.io/immutable-js/

N O O & W N -

Chapter 1. Core Concepts of Flux and Redux 15

The connection to different frameworks is done with the help of third-party libraries that provide
a set of convenience functions for each framework in order to seamlessly connect to Redux. The
library that we will use to connect Redux and React is called react-redux, and we will be covering
it extensively later in the book.

Basic Redux Implementation

People love Redux because of its simplicity. In fact, it is so simple that we can implement most of it
in a handful of lines of code. Thus, unlike with other frameworks, where the only way to learn is to
study the APIL here we can start by implementing Redux ourselves.

The basic premise behind Redux is the idea that all the application state is saved in one place, the
store. To use this idea in applications we will need to find a way to:

1. Modify the state as a result of events (user-generated or from the server).
2. Monitor state changes so we can update the UL

The first part can be split into two blocks of functionality:

1. Notify the store that an action has happened.
2. Help the store figure out how to modify the state according to our application’s logic.

Using this structure, let’s build a simple application that will implement a counter. Our application
will use pure JavaScript and HTML and require no additional libraries. We are going to have two
buttons that allow us to increment and decrement a simple counter, and a place where we can see
the current counter value:

The index.html file

<div>

Counter:

</div>

<button id="inc'>Increment</button>
<button id='dec'>Decrement</button>

Our application state will simply hold the counter value:

B wWw N -

Chapter 1. Core Concepts of Flux and Redux 16

A simple state holding a counter

let state = {
counter: 3

};

To make our demo functional, let’s create a click handler for each button that will use a dispatch()
function to notify our store that an action needs to be performed:

A basic dispatch API

function dispatch(action) { ... };

Connect click events to dispatch

// Listen to click events
document.querySelector('#inc').onclick = () => dispatch('INC');
() => dispatch('DEC');

document .querySelector('#dec').onclick

We will come back to its implementation later in this chapter. Also, let’s define a function that will
update the counter’s value in the HTML based on application state received as an argument:

Code to update the counter in the DOM

// Update view (this might be React or Angular2 in a real app)
function updateView() {
document .querySelector ('#counter').innerText = state.counter;

Since we want our view to represent the current application state, we need it to be updated every
time the state (and the counter) changes. For that, we will use the subscribe() function, which
we will also implement a bit later. The role of the function will be to call our callback every time
anything in the state changes:

Subscribe to changes API

subscribe(updateView);

We have now created a basic application structure with a simple state, implemented a function that
will be responsible for updating the HTML based on the state, and defined two “magic” functions—
dispatch() and subscribe()—to dispatch actions and subscribe to changes in state. But there is

O© 00 9 O O b W N =~

NN
= o

Chapter 1. Core Concepts of Flux and Redux 17

still one thing missing. How will our mini-Redux know how to handle the events and change the
application state?

For this, we define an additional function. On each action dispatched, Redux will call our function,
passing it the current state and the action. To be compliant with Redux’s terminology, we will call
the function a reducer. The job of the reducer will be to understand the action and, based on it, create
a new state.

In our simple example our state will hold a counter, and its value will be incremented or decremented
based on the action:

Simple reducer for INC and DEC actions

// Our mutation (reducer) function creates a new state based on the action passed
function reducer(state, action) {
switeh (action) {

case 'INC':

return { ...state, counter: state.counter + 1 };
case 'DEC':

return { ...state, counter: state.counter - 1 };
default:

return state;

An important thing to remember is that reducers must always return a new, modified copy of the
state. They shouldn’t mutate the existing state, like in this example:

Incorrect way to change state

// This is wrong!
state.counter = state.counter + 1;

Later in the book you will learn how you can avoid mutations in JavaScript with and without the
help of external libraries.

Now it’s time to implement the actual change of the state. Since we are building a generic framework,
we will not include the code to increment/decrement the counter (as it is application-specific) but
rather will call a function that we expect the user to supply, called reducer(). This is the reducer
we mentioned before.

The dispatch() function calls the reducer () implemented by the application creator, passing it both
the current state and the action it received. This information should be enough for the reducer()
function to calculate a new state. We then check if the new state differs from the old one, and if it
does, we replace the old state and notify all the listeners of the change:

© 00 < O U b W N =

[EEY
= o

O = W N =

Chapter 1. Core Concepts of Flux and Redux 18

Implementation of the disptach API

let state = null;

function dispatch(action) {
const newState = reducer(state, action);

if (newState !== state) {
state = newState;

listeners. forEach(listener => listener());

Again, it is very important to note that we expect a reducer to create a new state and not just modify
the existing one. We will be using a simple comparison by reference to check whether the state has

changed.

One remaining task is to notify our view of the state change. In our example we only have a single
listener, but we already can implement full listener support by allowing multiple callbacks to register
for the “state change” event. We will implement this by keeping a list of all the registered callbacks:

Implementation of the subscribe API

const listeners = [];

function subscribe(callback) {
listeners.push(callback);

This might surprise you, but we have just implemented the major part of the Redux framework. The
real code'" isn’t much longer, and we highly recommended that you take half an hour to read it.

Using the Real Redux

To complete our example, let’s switch to the real Redux library and see how similar the solution
remains. First we’ll add the Redux library, for now using CDNJS:

"https://github.com/reactjs/redux/tree/master/src

https://github.com/reactjs/redux/tree/master/src
https://github.com/reactjs/redux/tree/master/src

Chapter 1. Core Concepts of Flux and Redux 19

Adding Redux to a project

<script src="https://cdnjs.cloudflare.com/ajax/libs/redux/3.6.0/redux.min. js" />

We will change our previous state definition to be a constant that only defines the initial value of
the state:

The initial state

const initialState = {
counter: 3

};

Now we can use it to create a Redux store:

Creating a Redux store

const store = Redux.createStore(reducer, initialState);

As you can see, we are using our reducer from before. The only change that needs to be made to the
reducer is the switch statement. Instead of doing:

Previous reducer code

switch (action)

Changes to

New reducer code

switch (action.type)

The reason behind this is that actions in Redux are objects that have the special type property, which
makes reducer creation and action data more consistent.

The Redux store will also give us all the features we implemented ourselves before, like subscribe()
and dispatch(). Thus, we can safely delete these methods.

To subscribe to store changes, we will simply call the subscribe() method of the store:

O O b W N =~

Chapter 1. Core Concepts of Flux and Redux 20

Subscribing to store updates

store.subscribe(updateView);

Since subscribe() does not pass the state to the callback, we will need to access it viastore.getState():

Update view by getting the state out of the store

// Update view (this might be React in a real app)
function updateView() {
document .querySelector ('#counter').innerText = store.getState().counter;

store.subscribe(updateView);

The last change is in the dispatch() method. As mentioned previously, our actions now need to
have the type property. Thus, instead of simply sending the string ' INC" as the action, we now need
tosend { type: 'INC' }.

©O© 00 N O O & W N =

0 N O O & W N =~

NN NN NN N B 1 |l sl
O O b WO NP O © 03O0 O b WO N~ O O

Chapter 1. Core Concepts of Flux and Redux

The Complete Example

The HTML

21

<script src="https://cdnjs.cloudflare.com/ajax/libs/redux/3.6.0/redux.min. js" />

<div>

Counter:

</div>

<button id='"inc'>Increment</button>
<button id='dec'>Decrement</button>

The JavaScript

// Our mutation (Reducer) function,

// create a _new_ state based on the action passed

function reducer(state, action) {
switch(action.type) {

case 'INC':

return { ...state, counter: state.counter + 1 };
case 'DEC':

return { ...state, counter: state.counter - 1 };
default:

return state;

const initialState = {
counter: 3

};
const store = Redux.createStore(reducer, initialState);
// Update view (this might be React in a real app)

function updateView() {
document.querySelector('#counter').innerText = store.getState().counter;

store.subscribe(updateView);

27
28
29
30
31
32

Chapter 1. Core Concepts of Flux and Redux 22

// Update view for the first time
updateView();

// Listen to click events

() => store.dispatch({ type: "INC' });
() => store.dispatch({ type: 'DEC' });

document.getElementById('inc').onclick

document .getElementById('dec').onclick

Summary

In this chapter we briefly covered the history of Redux and Flux, and learned how Redux works at its
core. We also learned a bit about basic functional programming principles, such as pure functions
and immutability. As they are very important for our real-world applications, we will talk about
these concepts more later in the book. In the next chapter we are going to see how to actually work
with Redux by building a simple recipe book application.

B W N -

Chapter 2. Your First Redux
Application

In the previous chapter we learned what Redux is and how it works. In this chapter we will learn
how to use it for a simple project. The code base created in this chapter will be used as the base for
all the examples in the rest of this book. It is highly recommended that you follow along with and
tully understand this chapter and its code before moving on to more advanced topics.

Starter Project

Modern client-side applications often require a set of so-called boilerplate in order to make devel-
opment easier. The boilerplate may include things such as directory structure, code transformation
tools like SCSS and ES2016 compilers, testing infrastructure, and production pipeline tools for tasks
such as minification, compression, and concatenation.

To ease the chore of setting up a new project, the open-source community has created dozens of
different starter projects. The larger ones, like react-redux-starter-kit'?, consist of over a hundred
tiles. We will use a much simpler boilerplate, just enough to cover all the concepts explained in this

book.

As our project will be pure Redux, it will require no React or related libraries. We will use Webpack*?
as our main tool to handle all code transformation and production flow tasks.

Skeleton Overview

To start things off, let’s clone the starter project, install the needed packages, and verify that our
environment is ready:

Setting up the starter project

git clone http://github.com/redux-book/starter
cd starter

npm install

npm start

https://github.com/davezuko/react-redux-starter-kit
Phttps://webpack.js.org/

https://github.com/davezuko/react-redux-starter-kit
https://webpack.js.org/
https://github.com/davezuko/react-redux-starter-kit
https://webpack.js.org/

Chapter 2. Your First Redux Application 24

If everything went smoothly, you should be able to access http://localhost:8080'* and see a page
showing “A simple Redux starter” and a running counter. If you open the JavaScript console in the
Developer Tools, you should also see “Redux started” output. Our project is ready!

Time to open the code editor and go over the five files currently making up the project:

. .gitignore — A list of filename patterns for Git to ignore when managing our repository.
package.json — A list of all properties of our project and packages used.
webpack.config.js — Webpack configuration.

app/index.html — The HTML entry point for the project.

app/app.js — The JavaScript entry point to our code.

app/assets/stylesheets/main.css — Some basic CSS for the sample project.

N

.gitignore

This is a special configuration file for Git'® version control system, this file instructs Git which files
and directories should not be managed by it (for example, node_modules).

package.json

While the majority of the fields in this file are irrelevant at this point, it is important to note two
sections, devDependencies and dependencies. The former is the list of all the tools needed to build
the project. It currently includes only webpack-tools and the Babel transpiler, required to transpile
ES2016. The dependencies section lists all the packages we will bundle with our application. It
includes only the redux library itself.

webpack.config.js

This is the main Webpack configuration file. This settings file instructs Webpack how to chain
transpile tools and how to build packages, and holds most of the configuration of our project’s
tooling. In our simple project there is only one settings file (larger projects might have more granular
files for testing, development, production, etc.). Our webpack.config.js file sets up Babel to transpile
ES2016 into ES5 and defines the entry point of our application.

index.html /7 app.js

Single-page applications, unlike their server-generated cousins, have a single entry point. In our
project every part and page of the application will be rendered starting from index.html and all the
JavaScript-related startup code will be in app. js.

“http://localhost:8080
https://git-scm.com/

http://localhost:8080/
https://git-scm.com/
http://localhost:8080/
https://git-scm.com/

W N -

© 00 N O U b W N =

S G
D W NN »,

Chapter 2. Your First Redux Application 25

Our First Application

To learn how to use different parts of Redux, we will be building a Recipe Book application. It will
allow adding recipes and ingredients for each recipe, and will fetch an initial recipe list from a remote
server. In accordance with Redux principles, the application will keep all its state in our global store,
including some parts of the UL

The first step with any Redux-based app is to plan how data will be arranged in the store. Our recipe
object will start out holding only the recipe’s name (we will add more fields as needed). To store the
current list, we can use a regular array:

Simple state

recipes = [
{ name: 'Omelette' },

1;

Ingredients for each recipe will contain a name and a quantity. Connecting them to the state will
be a bigger challenge. There are three general approaches to make this connection.

The nested objects approach is to hold the ingredients as an array inside a recipe itself:

Nested objects state

state = {
recipes: |
{

name: 'omelette’,
ingredients: [
{
name: 'eggs',
quantity: 2

The nested reference approach is to store the recipe ingredient information directly in the state and
hold an array of “recipe ingredient IDs” in each recipe:

0 N O O B W N =

B | S s s s
0 90 O b 0ON -~ O

0 I O O b W N =~

O =Y
N O O WD =r OO O

Chapter 2. Your First Redux Application

Nested reference state

26

state = {
recipes: |
{

name: 'omelette’,
ingredients: [2, 3]
}
1,
ingredients: ({
2: {
name: 'eggs',

quantity: 2
},
3: {
name: 'milk",
quantity: 1
}

}
};

The separate object approach is to store the ingredients as a standalone array in the state, and put

the ID of the recipe the array is connected to inside of it:

Separate objects state

state = {
recipes: |
{
id: 10,
name: 'omelette’
}

1,
ingredients: [
{
recipe_id: 10,
name: 'eggs',
guantity: 2
1,
{
recipe_id: 10,
name: 'milk",
quantity: 1

18
19
20

W N~

Chapter 2. Your First Redux Application 27

]
};

While all the approaches have their upsides and downsides, we will quickly discover that in Redux,
keeping the structure as flat and normalized as possible (as in the second and third examples shown
here) makes the code cleaner and simpler. The state’s structure implies the use of two separate
reducers for recipes and ingredients. We can process both independently.

The biggest difference between the second and third options is how the link is made (who holds the
ID of whom). In the second example, adding an ingredient will require an update in two different
parts of the state—in both the recipes and ingredients subtrees—while in the third approach, we
can always update only one part of the tree. In our example we will use this method.

The subject of state management is covered in detail in the State Management Chapter in
Part 2.

Setting Up the Store

We will start by creating the store. In Redux there is only one store, which is created and initialized
by the createStore() method. Let’s open our index.js file and create the store:

Creating the Redux store

import { createStore } from 'redux';

const reducer = (state, action) => state;
const store = createStore(reducer);

The createStore() function can receive a number of parameters, with only one being required—the
reducer. In our example, the reducer simply returns the same state regardless of the action.

To make things more interesting, we can provide a default state to the store. This is useful when
learning, but the real use of this feature is mainly with server rendering, where you precalculate the
state of the application on the server and then can create the store with the precalculated state on
the client.

N O O B W N -

Chapter 2. Your First Redux Application 28

Create store with an initial state

const initialState = {
recipes: |
{
name: 'Omelette’
}
1,
ingredients: |
{
recipe: 'Omelette’,
name: 'Egg',
quantity: 2

]
};

const reducer = (state, action) => state;
const store = createStore(reducer, initialState);

window.store = store;

In the last line we make the store globally available by putting it on the window object. If we go to
the JavaScript console, we can now try playing with it:

Trying out the APIs in the console

store.getState()
// Object {recipes: Array[1], ingredients: Array[1]]}

store.subscribe(() => console.log("Store changed"));

store.dispatch({ type: "ACTION' });
// Store changed

As you can see, we can use the store object to access the current state using getState(), subscribe
to get notifications on store changes using subscribe(), and send actions using dispatch().

Adding Recipes

To implement adding recipes, we need to find a way to modify our store. As we learned in the
previous chapter, store modifications can only be done by reducers in response to actions. This
means we need to define an action structure and modify our (very lean) reducer to support it.

W N O O & W N =

© 00 9 O U b W N =

[N
(]

Chapter 2. Your First Redux Application 29

Actions in Redux are nothing more than plain objects that have a mandatory type property. We will
be using strings to name our actions, with the most appropriate in this case being 'ADD_RECIPE'.
Since a recipe has a name, we will add it to the action’s data when dispatching:

Dispatching a Redux object
store.dispatch({ type: 'ADD_RECIPE', name: 'Pancake' });

Let’s modify our reducer to support the new action. A simple approach might appear to be the
following:

Reducer that supports ADD_RECIPE

const reducer = (state, action) => {
switch (action.type) {
case 'ADD_RECIPE':
state.recipes.push({ name: action.name });

return state;

b

While this looks correct (and works when tested in our simple example), this code violates the basic
Redux principle of store immutability. Our reducers must never change the state, but only create a
new copy of it, with any modifications needed. Thus, our reducer code needs to be modified:

Correct way to build a reducer

const reducer = (state, action) => {
switch (action.type) {
case 'ADD_RECIPE':
return Object.assign({}, state, {
recipes: state.recipes.concat({ name: action.name })

});

return state;

};

The 'ADD_RECIPE' case has become more complex but works exactly as expected. We are using
the Object.assign() method Object.assign({}, state, { key: value }) to create a new object
that has all the key/value pairs from our old state, but overrides the recipes key with a new value. To
calculate the list of new recipes we use concat() instead of push(), as push() modifies the original
array while concat() creates a new array containing the original values and the new one.

More information about the Object.assign() method is available in the Reducers Chapter.

o I O O P W N =

[U S G
0 9 0 O b 0ON -~~~ O

19
20

O = W N -

Chapter 2. Your First Redux Application 30

Adding Ingredients

Similar to adding recipes, this step will require us to modify the reducer again to add support for
adding ingredients:

Adding ADD_INGREDIENT to the reducer

const reducer = (state, action) => {
switch (action.type) {
case 'ADD_RECIPE':
return Object.assign({}, state, {
recipes: state.recipes.concat({ name: action.name })

});

case 'ADD_INGREDIENT':

const newlngredient = {
name: action.name,
recipe: action.recipe,
quantity: action.quantity

b

return Object.assign({}, state, {
ingredients: state.ingredients.concat(newlngredient)

});

return state;

b

One problem you might encounter while dispatching actions from the console to test the store is
that it’s hard to remember the properties that need to be passed in the action object. This, among
other reasons, is why in Redux we use the concept of action creators: functions that create the action
object for us.

A function to create the action object

const addIngredient = (recipe, name, quantity) => ({
type: 'ADD_INGREDIENT', recipe, name, quantity

});

store.dispatch(addingredient('Omelette', 'Eggs', 3));

This function both hides the structure of the action from the user and allows us to modify the action,
setting default values for properties, performing cleanup, trimming names, and so on.

0 N O O b W N =~

Chapter 2. Your First Redux Application 31

0 For more information on action creators, consult the Actions and Action Creators Chapter
in Part 3.

Structuring the Code

Having all our code in a single file is obviously a bad idea. In Redux, it’s common for the directory
structure to follow the names of the Redux “actors.” Reducers are placed in the reducers directory, and
the main reducer (commonly called the root reducer) is placed in the root.js file. Action creators go in
the actions directory, divided by the type of object or data they handle—in our case, actions/recipes.js
and actions/ingredients.js. Since we only have a single store, we can put all its code in one file:
store/store.js.

After all the changes, the index.js file should look like the following:

Final index.js

import store from './store/store’;
import { addRecipe } from './actions/recipes';

[

import { addIngredient } from './actions/ingredients';

store.dispatch(addRecipe('Pancake'));
store.dispatch(addIngredient('Pancake', 'Eggs', 3));

window.store = store;

A Closer Look at Reducers

If you open the reducers/root.js file, you will find that the same reducer is now taking care of different
parts of our state tree. As our application grows, more properties will be added to both the recipes
and the ingredients subtrees. Since the code in both handlers is not interdependent, we can split it
further into three reducers, each one responsible for a different part of the state:

0 I O O b W N =

B s |
<N O O WO N, OO O

Chapter 2. Your First Redux Application

Multi-responsibility reducer

32

const recipesReducer = (recipes, action) => {
switch (action.type) {
case 'ADD_RECIPE':
return recipes.concat({name: action.name});

return recipes;

};

const ingredientsReducer = (ingredients, action) => { .. }

const rootReducer = (state, action) => {
return Object.assign({}, state, {
recipes: recipesReducer(state.recipes, action),

ingredients: ingredientsReducer(state.ingredients, action)

});
};

There are three main benefits here. First, our root reducer is now very simple. All it does is create a
new state object by combining the old state and the results of each of the subreducers. Second, our
recipes reducer is much simpler as it only has to handle the recipes part of the state. And best of
all, our root, ingredients, and any other reducers that we might create don’t need to know or care
about the internal structure of the recipes subtree. Thus, changes to that part of the tree will only
affect the recipes part. A side effect of this is that we can tell each reducer how to initialize its own
subtree, by using default parameters from ES2016:

Reducer for recipes

const recipesReducer = (recipes = [], action) => { ... };

Note the default [] set for recipes.

Since combining multiple reducers is a very common pattern, Redux has a special utility function,
combineReducers(), which does exactly what our root reducer does:

D W N -

Chapter 2. Your First Redux Application 33

Combining multiple reducers

export default combineReducers({
recipes: recipesReducer,
ingredients: ingredientsReducer

1)

Here we created a root reducer that employs two subreducers, one sitting in the recipes subtree
and the other in the ingredients subtree. This is a good time to split our reducers into their own
files, reducers/recipes.js and reducers/ingredients.js.

Handling Typos and Duplicates

Before moving forward, we need to make one last change to our code to fix something that might
not be an apparent problem right now. We have been using strings like ' ADD_RECIPE' in our action
creators and reducers, but never bothered to verify that they match. In large applications this often
leads to errors that are very hard to debug, as a typo in the action creator will cause a reducer to
ignore an action. Or, even worse, two developers might use the same string by mistake, which will
lead to very strange side effects as unintended reducers will process the dispatched actions.

To fix these problems we can utilize ES2016’s native const support, which guarantees that we cannot
define the same constant twice in the same file. This will catch duplicate names at compile time,
even before our code reaches the browser.

Let’s create a new file, constants/action-types.js, which will hold all the action type constants in our
application:

constants/action-types.js

export const ADD_RECIPE = "ADD_RECIPE';
export const ADD_INGREDIENT = "ADD_INGREDIENT";

Now in our reducers and action creators we will use the constants instead of the strings:

O O B W N~

0 N O O B W N =

N B 1 1l s s s s
© ©W 0O J O O b WO N~ O O

Chapter 2. Your First Redux Application 34

Using constants

import { ADD_RECIPE } from 'constants/action-types';

const recipesReducer = (recipes = [], action) => {
switch (action.type) {
case ADD_RECIPE:

Simple Ul

To get a feeling for how a simple UI can be connected to Redux, we will be using a bit of jQuery
magic. Note that this example is very simple and should never be used in a real application, although
it should give you a general feeling of how “real” applications connect to Redux.

Let’s store our current Ul inui/jquery/index. js. The jQuery Ul will create a simple view of current
recipes in the store:

ui/jquery/index.js

import $ from 'jquery';
import store from 'store/store’;

function updateUI() {
const { recipes } = store.getState();
const renderRecipe = (recipe) => “<1i>${ recipe.name }</1i>";

$("'.recipes > ul').html(recipes.map(renderRecipe));

export default function loadUI() ({
$('#app').append("
<div class="recipes">
<h2>Recipes: </h2>

</div>

")

updateUI();

We are using jQuery’s append() method to add a new div to our application container and using the
updateUI() function to pull the recipes list from our state and display them as a list of unordered
elements.

0 N O O & W N~

W W N DNDNDNDDNDNDNDDNDNNNMNNASASEPA PSSP s
O © 00 9 O Ol i WO N O © 00 3O O b O N~ O O

Chapter 2. Your First Redux Application 35

To make our UI respond to updates, we can simply register the updateUI() function within our
store, inside 1oadUI():

Register updateUI with the store

store.subscribe(updateUl);

To support adding recipes, we will add a simple input and button and use our store’s dispatch()
method together with the addrRecipe() action creator to send actions to the store:

Add support for click events

import $ from 'jquery';
import store from 'store/store’;
import { addRecipe } from 'actions/recipes’;

function updateUI() {
const { recipes } = store.getState();

const renderRecipe = (recipe) => “<1i>${ recipe.name }</1i>";

$('.recipes > ul').html(recipes.map(renderRecipe));
function handleAdd() {
const $recipeName = $('.recipes > input');
store.dispatch(addRecipe($recipeName.val()));
$recipeName.val('');
export default function loadUI() {
$(' #app"').append("

<div class="recipes">
<h2>Recipes:</h2>

<input type="text" />

<button>Add</button>
</div>

)

store.subscribe(updateUl);

32
33
34
35

o I O O P W N =

Chapter 2. Your First Redux Application 36

$(document).on('click', '.recipes > button', handleAdd);

updateUI();

Logging

Now that our UI allows us to add new recipes, we find that it’s hard to see what actions are sent to
the store. One option is to log received actions from the root reducer—but as we will see shortly, this
can be problematic. Another option is to use the middleware we discussed in the previous chapter.

The store holds a connection to all the middleware and they get actions before the reducers, which
means they have access to any actions dispatched to the store. To test this, let’s create a simple
logging middleware that will print any action sent to the store:

A simple logging middleware

const logMiddleware = ({ getState, dispatch }) => (next) => (action) => {
console.log(Action: ${ action.type }7);

next(action);

};

export default logMiddleware;

The structure might seem strange at first, as we are creating a function that returns a function that
returns a function. While this might be a little confusing, it is required by the way Redux combines
middlewares in its core. In practice, in the inner most function we have access to the dispatch()
and getState() methods from the store, the current action being processed, and the next () method,
which allows us to call the next middleware in line.

Our logger prints the current action and then calls next(action) to pass the action on to the
next middleware. In some cases, middleware might suppress actions or change them. That is why
implementing a logger in a reducer is not a viable solution: some of the actions might not reach it.

To connect the middleware to our store, we need to modify our store/store.js file to use Redux’s
applyMiddleware() utility function:

O O 0 N O O b W N -~

NN

S © W I O O b W N =

[N

Chapter 2. Your First Redux Application 37

Connecting a middleware to the store

import { createStore, applyMiddleware } from 'redux';
import rootReducers from 'reducers/root';
import logMiddleware from 'middleware/log’;

const initialState = { ... };

export default createStore(
rootReducers,

initialState,
applyMiddleware(logMiddleware)
);

Getting Data from the Server

Fetching data from a server, like anything with Redux, happens as a result of a dispatched action. In
our case, the UI should dispatch an action when it loads to ask Redux to bring data to the store.

For this we will need to add a new constant to constants/action-types.js and a new action creator in
actions/recipes.js. Our action will be called 'FETCH_RECIPES'.

Sadly, we can’t handle the action inside a reducer. Since the action requires server access that might
take time, our reducer will not be able to handle the response—reducers should return the modified
state immediately.

Luckily, we have middleware, which have access to the store and thus the store’s dispatch()
method. This means we can catch the action in a middleware, submit an Ajax request, and then
send a new action to the reducers with the data already inside.

Here is a simple API middleware that listens to 'FETCH_RECIPES' and dispatches 'SET_RECIPES'
when the data arrives:

API middleware

import { FETCH_RECIPES } from 'constants/action-types';
import { setRecipes } from 'actions/recipes';

const URL = 'https://s3.amazonaws.com/500tech-shared/db. json';

function fetchData(url, callback) {
fetch(url)
.then((response) => {
if (response.status !== 200) {
console.log(Error fetching recipes: ${ response.status }°);

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0 I O O b WO N =~

(AN
N O O

Chapter 2. Your First Redux Application 38

} else {
response. json().then(callback);

}
P

.catch((err) => console.log(Error fetching recipes: ${ err }°))

const apiMiddleware = ({ dispatch }) => next => action => {
if (action.type === FETCH_RECIPES) {
fetchData(URL, data => dispatch(setRecipes(data)));

next(action);

};

export default apiMiddleware;

The main code of our middleware is a simple i f statement that calls the fetchData() function and
passes it a callback that dispatches setRecipes() with the returned data:

Catching API requests

if (action.type === FETCH_RECIPES) ({
fetchData(URL, data => store.dispatch(setRecipes(data)));

The fetchData() code itself is a generic use of the fetch APL

To make this middleware work, we need to add it to our store:

Adding the API middleware to the store

import { createStore, applyMiddleware } from 'redux';
import rootReducers from 'reducers/root';

import logMiddleware from 'middleware/log’;

import apiMiddleware from 'middleware/api’;

const initialState = { .. };

export default createStore(
rootReducers,
initialState,
applyMiddleware(logMiddleware, apiMiddleware)

)

o I O O P W N =

[G
o b W N =~ O O

Chapter 2. Your First Redux Application

We also need to modify our reducers/recipes.js to support the new 'SET_RECIPES' action:

Adding support for SET_RECIPES in the recipes reducer

39

import { ADD_RECIPE, SET_RECIPES } from 'constants/action-types';

const recipesReducer = (recipes = [], action) => {
switch (action.type) {
case ADD_RECIPE:

return recipes.concat({name: action.name});
case SET_RECIPES:

return action.data.recipes;

return recipes;

};

export default recipesReducer;

The code for the reducer is surprisingly simple. Since we get a new list of recipes from the server,

we can just return that list as the new recipes list:

Simple SET_RECIPES implementation

case SET_RECIPES:
return action.data.recipes;

Finally, we can remove the initialState we passed to our store, since we will be getting data from

the server. Each of the reducers has default values for its subtrees (remember the recipes

[] from

above?), and the reducers will be the one to construct the initial state automatically. This magic is

explained in the Reducers Chapter.

Here’s our new store/store.js:

© 00 < O U b W N =

Chapter 2. Your First Redux Application 40

store/store.js

import { createStore, applyMiddleware } from 'redux';
import rootReducers from 'reducers/root';

import logMiddleware from 'middleware/log’;

import apiMiddleware from 'middleware/api’;

export default createStore(
rootReducers,
applyMiddleware(logMiddleware, apiMiddleware)

);
o In a real application the API middleware will be more generic and robust. We will go into
much more detail in the Middleware Chapter.
Summary

In this chapter we built a simple Redux application that supports multiple reducers, middleware,
and action creators. We set up access to a server and built a minimal UT using jQuery. In the book’s
Git repository*’, you can find the full source code for this example, including the missing parts (like
the ingredients UI).

®https://github.com/redux-book

https://github.com/redux-book
https://github.com/redux-book

Part 2. Real World Usage

©O© 00 O U b W N =

N N B S s s
, O O 00 9 O O b W N =~ O

Chapter 3. State Management

One of the main strengths of Redux is the separation of state (data) management from the
presentation and logic layers. Due to its division of responsibilities, the design of the state layout
can be done separately from the design of the UI and any complex logic flows.

The Concept of Separation

To illustrate the concept, let’s consider our recipe book application. The app can manage multiple
recipe books, each having multiple recipes. A recipe, in turn, is an object containing a list of
ingredients, preparation instructions, images, a favorited flag, etc.:

Simple structure of recipe app state

const state = {
books: [
{
id: 21,
name: 'Breakfast',
recipes: |

{
id: 68,
name: 'Omelette’,
favorite: true,
preparation: 'How to prepare...',
ingredients: [...]
},
{...},
{...}
]
1
{...},
{...}

While this state layout contains all the required information and conforms exactly to the description
of our application, it has a couple of issues:

W N O O & W N =

NN N DNDDNDNDNDDNDNDDN S A B 1 s s
© 0 9 0O O & WD PO © W10 U & Wh = O

Chapter 3. State Management 43

+ Reducer nesting and coupling
« Access to multiple nested data entities

Reducer Nesting and Coupling

Let’s try to implement a reducer that supports an action that adds a new ingredient to a recipe.
There are two main approaches, one where all the reducers in the chain are aware of the action
being passed and one where each reducer only passes the information down to its children.

Let’s investigate where the problems lie and how we can deal with them. The first approach could
be implemented as follows:

Action-aware reducers

const booksReducer = (state, action) => {
switch(action.type) {
case ADD_INGREDIENT:
return Object.assign({}, state, {
books: state.books.map(
book => book.id !== action.payload.booklId
7 book
. recipesReducer(book, action)
)
1)
}
1

const recipesReducer = (book, action) => {
switch(action.type) {
case ADD_INGREDIENT:
return Object.assign({}, book, {
recipes: book.recipes.map(
recipe => recipe.id !== action.payload.recipeld
? recipe
ingredientsReducer(recipe, action)
)
1)
}
¥

const ingredientsReducer = (recipe, action) => {
// Regular reducer

b

0 I O O & W N =~

SO =Y
<N O O WD~ OO O

Chapter 3. State Management 44

In this implementation, all the “parent” reducers must be aware of any actions used in their children.
Any changes or additions will require us to check multiple reducers for code changes, thus breaking
the encapsulation benefits of multireducer composition and greatly complicating our code.

The second option is for reducers to pass all actions to their children:

Action-passing reducer

const booksReducer = (books, action) => {
const newBooks = handleBookActions(books, action);

// Apply recipes reducers

return newBooks.map(book => Object.assign({}, book, {
recipes: recipesReducer(book.recipes, action)

1)

b

const recipesReducer = (recipes, action) => {
const newRecipes = handleRecipeActions(book, action);

// Apply ingredients reducers

return newRecipes.map(recipe => Object.assign({}, recipe, {
ingredients: ingredientsReducer(recipe.ingredients, action)

1);

}i

In this implementation, we separate the reducer logic into two parts: one to allow any child reducers
to run and the second to handle the actions for the reducer itself.

While this implementation doesn’t require the parent to know about the actions supported by it’s
children, we are forced to run a very large number of reducers for each recipe. A single call to an
action unrelated to recipes, like UPDATE_PROFILE, will run recipesReducer() for each recipe, and
have it in turn run ingredientsReducer () for each of the ingredients.

Access to Multiple Nested Data Entities

Another problem with the nested state approach is retrieving data. If we would like to show all of a
user’s favorite recipes, we need to scan all the books to find the relevant ones:

W N O O & W N =~

0 N O O & W N -~

S
O© 00 1 O Ol b WO N~ O ©

Chapter 3. State Management 45

Get list of favorite recipes

const getFavorites = (state) => {
const recipes = state.books.map(
book => book.filter(recipe => favorite)

)

// Strip all null values
return recipes.filter(recipe => recipe);

};

Also, since this code (or similar) will be used for the UI, any changes to the structure of the state will
need to be reflected not just in the reducers but in the UI as well. This approach breaks our separation
of concerns model and might require extensive changes to the Ul layer(s) on state structure changes.

State as a Database

A recommended approach to solve the various issues raised above is to treat the application state as
a database of entities. In our example, we will break down the nesting to make our state as shallow
as possible and express connections using IDs:

Normalized state

const state = {
books: {
21: {
id: 21,
name: 'Breakfast',
recipes: [63, 78, 221]

}
1
recipes: {
63: {
id: 683,
book: 21,

name: 'Omelette’',
favorite: true,
preparation: 'How to prepare...',
ingredients: [152, 121]
3
78: {},

20
21
22
23
24

O N O O & W N~

NN N DNNDNDDNR B 1 sl |y
O O i WO NP O © 03O0 O b WO N O O

Chapter 3. State Management 46

221: {}
}I

ingredients: {}

b

In this structure, each object has its own key right in the root of our state. Any connections between
objects (e.g., ingredients used in a recipe) can be expressed using a regular ordered array of IDs.

Reducer Nesting and Coupling

Let’s examine the implementation of the reducers needed to handle the ADD_INGREDIENT action using
the new state:

Reducers for adding a new ingredient

const booksReducer = (books, action) => {
// Not related to ingredients any more

};

const recipeReducer = (recipe, action) => {
switch (action.type) {
case ADD_INGREDIENT:
return Object.assign({}, recipe, {
ingredients: [...recipe.ingredients, action.payload.id]

});

return recipe;

};

const recipesReducer = (recipes, action) => {
switch(action.type) {

case ADD_INGREDIENT:
return recipes.map(recipe =>
recipe.id !== action.payload.recipeld
? recipe
. recipesReducer(recipe, action));

27
28
29
30
31
32

Chapter 3. State Management 47

const ingredientsReducer = (ingredients, action) => {
switch (action.type) {
case ADD_INGREDIENT:
return [...ingredients, action.payload]
}
1

There are two things to note in this implementation compared to what we saw with the denormalized
state:

The books reducer is not even mentioned. Nesting levels only affect the parent and children, never
the grandparents. The recipes reducer only adds an ID to the array of ingredients, not the whole
ingredient object.

To take this example further, the implementation of UPDATE_RECIPE would not even require any
change to the recipes reducer, as it can be wholly handled by the ingredients reducer.

Access to Multiple Nested Data Entities

Getting a list of favorite recipes is much simpler in the normalized state, as we only need to scan
the recipes “table” This can be done in the UI using a function called a selector. If you think of the
state as a database, you can imagine selectors as database queries:

Favorite recipes selector

const getFavorites = (state) =>
state.recipes.filter(recipe => favorite);

The main improvement is that we do not need to be aware of the structure or nesting of the state to
access deeply nested information. Rather, we treat our state as a conventional database from which
to extract information for the UL

Keeping a Normalized State

While normalized state might seem like a great idea, often the data returned from the server is
structured in a deeply nested way. A possible example of fetching data from the /recipes/123 API
endpoint might look like this:

0 N O O s~ W N -

B s s s
O 0 O b 0ON =~ O

, O O 00 9 O O b W N =~

(AN

Chapter 3. State Management 48

Data returned from /recipes/123

{

id: 683,
name: 'Omelette’,
favorite: true,
preparation: 'How to prepare...',
ingredients: [
{
id: 5128,
name: 'Egg',
quantity: 2
1,
{
id: 729,
name: 'Milk",
quantity: '2 cups'

]
};

Since the only way to update the Redux store is by sending actions to the reducers, we must build a
payload that can be easily handled by our reducers and find a way to extract the payload from the
denormalized server-returned data.

Building the Generic Action

Potentially, we would like each of our data reducers to be able to handle a special UPDATE_DATA
action and extract the relevant parts it needs:

Sample UPDATE_DATA action

const updateData = ({
type: UPDATE_DATA,

payload: {
recipes: {
63: {
id: 63,

name: 'Omelette’,

favorite: true,

preparation: 'How to prepare...',
ingredients: [5123, 729]

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0 N O O & W N~

e
W N~ O

Chapter 3. State Management 49

3,
ingredients: ({
5123: {
id: 5123,
name: 'Egg',
quantity: 2
},
729: {
id: 729,
name: 'Milk",
quantity: '2 cups'

}
1)

Using this approach, our recipes reducer’s support for UPDATE_DATA can be as simple as:

Recipes reducer support for UPDATE_DATA

const recipesReducer = (state, action) => {
switch(action.type) {
case UPDATE_DATA:
if (!('recipes' in action.payload)) return state;

return Object.assign({}, state, {
recipes: Object.assign({},
state.recipes,
action.payload.recipes
)
1
}
¥

Our reducer checks if the payload contains any recipes and merges the new data with the old
recipes object (thus adding to or otherwise modifying it as needed).

Normalizing the Data

With the reducers updated and the action structure defined, we are left with the problem of
extracting the payload from the denormalized data we got from the server.

< O O b W N -

Chapter 3. State Management 50

A simple approach might be to have a custom function that knows each API’s return data and
normalizes the returned nested JSON into a flat structure with custom code.

Since this is quite a common practice, the custom code can be replaced by the normalizr'’ library.
Using this library, we can define the schema of the data coming from the server and have the
normalizr code turn our nested JSON into a normalized structure we can pass directly into our
new UPDATE_DATA action.

Persisting State

In many cases, we will want to keep the current state even across a page refresh or the application’s
tab being closed. The simplest approach to persisting the state is keeping it in the browser’s local
storage.

To easily sync our store with local storage (or any other storage engine), we can use the redux-
persist'® library. This will automatically serialize and save our state once it has been modified.

To use the library, simply install it with npm and modify the store creation file to wrap createStore
with an enhancer:

Setting up redux-persist

import { createStore } from 'redux';
import { persistStore, autoRehydrate } from 'redux-persist';
import rootReducer from 'reducers/root';

const store = createStore(rootReducer, autoRehydrate());

persistStore(store);

Once persistStore(store) has been called, our store and the browser’s local storage will automat-
ically be in sync and our store will persist across page refresh.

Advanced State Sync

The redux-persist library has advanced functionality that will allow us to whitelist only part
of the state to persist and to specify special serializers for the part of the state that cannot
be serialized with JSON.stringify() (functions, symbols, etc.). We recommend you review the
library’s documentation for details on the more advanced features.

https://github.com/paularmstrong/normalizr
'®https://github.com/rt2zz/redux-persist

https://github.com/paularmstrong/normalizr
https://github.com/rt2zz/redux-persist
https://github.com/rt2zz/redux-persist
https://github.com/paularmstrong/normalizr
https://github.com/rt2zz/redux-persist

O© 00 9 O U b W N =

RN
N =~ O

Chapter 3. State Management 51

Real-World State

In a real-world application, our state will usually contain a number of different entities, including the
application data itself (preferably normalized) and auxiliary data (e.g., current access token, pending
notifications, etc.).

Structure of a Common State

Unlike the data coming from the server, some information will be used exclusively by our frontend
application for its internal needs. A common example would be keeping the total number of active
server requests in order to know whether to display a spinner. Or we might have a currentUser
property where we keep information about the current user, such as the username and access token:

Sample state

const state = {
books: { },
recipes: { },
ingredients: { },
ui: {
activeRequests: 0
3
currentUser: ({
name: 'Kipi',
accessToken: 'topsecrettoken'
}
1

As our application grows, more types of state entities will creep in. Some of these will come from
external libraries like redux- forms, react -redux-router, and others that require their own place in
our state. Other entities will come from the application’s business needs.

For example, if we need to support editing of the user’s profile with the option to cancel, our
implementation might create a new temp key where we will store a copy of the profile while it
is being edited. Once the user clicks “confirm” or “cancel,” the temp copy will either be copied over
to become the new profile or simply deleted.

Keeping the State Manageable

To make things as simple as possible, it is best to have a reducer for each key in the base state. This
will allow for an encapsulation approach where it is immediately clear who can modify which parts
of our state.

For a very large project, it might be beneficial to separate the “server data” and the “auxilary/temp
data” under different root keys:

Chapter 3. State Management 52

Large nested state

const state = {
db: {
books: { 1},
recipes: { },
ingredients: { },
¥
local: {
ui: {
activeRequests: 0
1,
user: {
name: 'Kipi',
accessToken: 'topsecrettoken'
}
1,

vendor: {
forms: {},
router: {}
}
}i

This allows for easier management of the different parts when deciding what needs to be synced to
local storage, or when clearing stale data.

In general, the state is the frontend’s database and should be treated as such. It is important to
periodically check the current layout and do any refactoring to make sure the state’s structure is
clean, clear, and easy to extend.

What to Put in the State

A common issue when working with Redux is deciding what information goes inside our state and
what is left outside, either in React’s state, Angular’s services, or other storage methods of different
Ul libraries.

There are a few questions to consider when deciding whether to add something to the state:

« Should this data be persisted across page refresh?
« Should this data be persisted across route changes?
« Is this data used in multiple places in the UI?

Chapter 3. State Management 53

If the answer to any of these questions is “yes,” the data should go into the state. If the answer to all
of these questions is “no,” it could still go into the state, but it’s not a must.

A few examples of data that can be kept outside of the state:

Currently selected tab in a tab control on a page

Hover visibility/invisibiity on a control
Lightbox being open/closed

Currently displayed errors

We can consider this similar to putting data in a database or keeping it temporarily in memory.
Some information can be safely lost without affecting the user’s experience or corrupting his data.

Summary

In this chapter we discussed the structure of our Redux state and how it should be managed for
easier integration with reducers and the UI. We also learned that the state should be considered the
application’s database and be designed separately from the presentation or logic layers.

In the next chapter we will talk about server communication, the best method of sending and
receiving data to and from our server using middleware.

O b W N -

Chapter 4. Server Communication

Server communication is one of the more important parts of any application. And while the
basic implementation can be done in a few lines of code, it can quickly grow into a complicated
mechanism able to handle authentication, caching, error handling, WebSockets, and a myriad of
other functionality and edge cases.

Online tutorials usually devote little time to this topic, and suggest using regular promises and the
redux-thunk middleware to let action creators dispatch() actions when data is fetched. When a
project grows, however, it becomes clear that it’s best to have a single place to handle authentication
(setting custom headers), error handling, and features like caching. Considering this, we need to
be able to both access the store and dispatch asynchronous events—which is the perfect job for a
middleware.

Before reading this chapter, it is strongly recommended that you read the Middleware
Chapter.

Using Promises in Action Creators

Let’s start by looking at server communication when implemented using async action creators (using
libraries such as redux-thunk), to understand the underlying pitfalls of this approach:

Promise in action creator

const fetchUser = id => (dispatch) =>
fetch(user/${id}")
.then(response => response. json())
.then(userData => dispatch(setUserData(userData))
.catch(error => dispatch(apiError(error)));

Did you notice we handled the error in response. json() instead of the fetch() API?

N O O B W N =

Chapter 4. Server Communication 55

There are a few issues with this code:

1. We can’t see an action going out in our logs before the fetch() completes, preventing the
regular Redux debug flow.

2. Every action creator will need to have the repetitive functionality to handle errors and set
headers.

3. Testing gets harder as more async action creators are added.

4. If you want to change the server communication strategy (e.g., replace fetch() with
WebSockets), you need to change multiple places in the code.

Keeping the code as short and stateless as possible, in keeping with the spirit of Redux, is easier
when all the action creators are simple functions. This makes them easier to understand, debug, and
test. Keeping the action creators “clean” from async code means moving it into another part of the
stack. Luckily, we have the perfect candidate—middleware. As we will see, using this approach we
can keep the action creators simple and generate actions that contain all the information needed for
a middleware to perform the API request.

Here, we are using the Fetch API' to access the server. Our target URL is built from a
constant specifying the root (e.g., 'http://google.com/") and the sub-URL we want to
access, passed to us in the action object.

APl Middleware

Our goal is to create a generic middleware that can serve any API request and requires only the
information passed to it in an action. The simplest solution is to define a new action type that is
unique to API-related events:

Simple API middleware
const apiMiddleware = ({ dispatch }) => next => action => {
if (action.type !== "API') {
return next(action);
}

// Handle API code
¥

Our middleware will listen to any action with type 'API' and use the information in it’s payload to
make a request to the server. It will let any other actions flow down the middleware chain.

*https://developer.mozilla.org/en/docs/Web/API/Fetch_API

https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://developer.mozilla.org/en/docs/Web/API/Fetch_API

W N -

1

Chapter 4. Server Communication 56

Moving Code from Action Creators

The original async example used the following code to communicate with the server:

Promise in action creator

fetch(user/${id}")
.then(response => response. json()
.then(userData => dispatch(setUserData(userData))
.catch(error => dispatch(apiError(error)));

This code has a few hardcoded issues that we will need to address in our generic API:

« How to construct the URL
o What HTTP verb to use (GET/POST/etc)
« What action to dispatch on success or error

Since we plan to pass all this information inside our action object, we can expect the corresponding
action creator to pass in all the required parameters.

The URL-building issue is simple to solve, simply by passing the required URL in the action object
(we will start with GET-only APIs):

Target URL

fetch(BASE_URL + action.url)

To make things more generic, actions will only hold the relative part of the server’s full URL.
This will allow us to easily set the BASE_URL to be different in production, development,
and testing.

Handling the return value from the call is a bit more complex, as our middleware needs to figure
out what action to dispatch. A simple solution is to pass the next action to be dispatched inside the
API action. In our case we will use the Flux Standard Action (FSA) convention and put the ID of the
next action inside the success key (i.e., action.payload.success):

Handling the result

dispatch({ type: action.payload.success, response });

o I O O P W N =

RGN
N »~ O ©

© 00 9 O U b W N =

Chapter 4. Server Communication 57

Combining these two ideas results in the following basic API middleware:

Basic API middleware

const apiMiddleware = ({ dispatch }) => next => action => {
if (action.type !== "API') {
return next(action);

const { payload } = action;

fetch(BASE_URL + action.url)
.then(response => response. json())
.then(response => dispatch({ type: payload.success, response }))
)i
1

Using the API Middleware

To use our middleware we need to craft a special action object for it:

Sample action creator

import { API, SET_RECIPES } from 'constants/action-types';

const fetchRecipes = () => ({
type: API,
payload: {
url: 'recipes.json',
success: SET_RECIPES
}
b

Our middleware should call the server and resume the regular application flow. At a later time, once
the call from the server completes, it should dispatch a new action to the store:

D W N -

© 00 9 O U b W N =

RN
= o

12

Chapter 4. Server Communication 58

The resulting action dispatched after a successful call

{
type: SET_RECIPES,

payload: [.. array of recipes from server ..]

b

Error Handling

Our current example ignores any error handling. To solve this problem, we need to extend our
middleware to catch server errors and dispatch events when they happen.

Error handling could be done in a number of ways:

« Dispatch a custom error message (based on data in the action object) on an error event.
« Dispatch a generic API error action to be handled by a special reducer or another middleware.
« Combine both approaches with a fallback for #2 if #1 was not provided.

For example, here we are using FSA-compliant action creators to send a genericapiError () message
on any failed server request:

Handle API errors with generic callback only

const handleError = error => dispatch(apiError(error));

fetch(BASE_URL + action.url)
.then(response => {
if (response.status >= 300) {
handleError (response.status);
} else {
response. json()
.then(data => dispatch({ type: action.next, data }))
}
b

.catch(handleError);

We leave it to you as an exercise to add support for custom error handling for actions (a way for an
action creator to specify it wants a different error flow than the default).

0 N O O & W N =~

TN
N »~ O O

0 N O O & W N =

[N
W N~ O

Chapter 4. Server Communication 59

Loading Indicator (Spinner)

A common question when using Redux is how to show a spinner when server requests are in
progress. The middleware approach provides an answer using additional dispatch() calls. Before
a request starts or after it completes, we can dispatch a special action to be caught by reducers
responsible for the UI state. Here, we dispatch an apiStart() action before starting any server
communication and dispatch apiDone() on both successful and failed server responses:

Show and hide spinner

dispatch(apiStart());

fetch(BASE_URL + action.payload.url)
.then(response => {
dispatch(apiDone());
V2
)

.catch(error => {
dispatch(apiDone());
/S

)

To keep track of pending requests, we can keep a counter in the state under a serverStatus or ui
containers in the state. The counter can be used by the UI to show a spinner if the number of pending
requests is greater than zero:

Ul reducer to handle the requests counter

const uiReducer = (state, action) => {
switch (action.type) {
case API_START:
return Object.assign({}, state, {
requests: state.requests + 1

});

case API_DONE:
return Object.assign({}, state, {
requests: state.requests - 1

});

O© 00 9 O O P W N =

Chapter 4. Server Communication 60

Dynamic Action Types

Building on the loading indicator example, we might want to handle multiple indicators for different
parts of our application, by having multiple subtrees in the ui state sub-tree. Unfortunately, this does
not work with generic success/error actions.

One way to handle multiple pending, success, and error actions is to pass them in the dispatched
action:

Action creator with custom pending action

const fetchRecipes = () => ({
type: 'API',
payload: {
url: 'recipes.json',
pending: 'FETCH_RECIPES_PENDING',
success: 'FETCH_RECIPES_SUCCEESS',
error: '"FETCH_RECIPES_FAILURE'

}
});

This method allows us to handle different action types in different reducers. However, this approach
is not flexible, encourages code repetition, and forces us to have multiple action types defined for
every API action.

Another approach is to store the response status in the dispatched action:

dispatch({ type: FETCH_RECIPES, status: 'SUCCESS', response });

This might look simple, as you can reuse one action in the middleware, but it causes reducers to
contain more control flow and logic and it makes logging and debugging more difficult (because we
get the same action types in the log and need to accurately verify which one of them had a particular
status).

A third approach is to create dynamic action types that will follow a single convention:

0 N O O B~ W N -

0 N O O & W N =

Ui
W N~ O

B oW N -

Chapter 4. Server Communication 61

constants/action-types.js

const asyncActionType = (type) => ({
PENDING: “${type} PENDING",
SUCCESS: “${type}_SUCCESS",
ERROR: “${type}_ERROR",

1);

export const LOGIN = asyncActionType('LOGIN');
export const FETCH_RECIPES = asyncActionType('FETCH_RECIPES');

With this approach we can use the same action type constant to handle three cases for async actions:

reducers/recipes.js

import { FETCH_RECIPES } from 'constants/action-types';
const recipesReducer = (state, action) => {
switch (action.type) {
case FETCH_RECIPES.SUCCESS:

// Handle success

case FETCH_RECIPES.ERROR:
// Handle failure

Since our API middleware is already checking for success and pending in the action.payload, the
action creators can simply merge the “async-ready costs” into the resulting payload:

API action creator with custom status handling

const fetchRecipes = () => ({

type: API,

payload: Object.assign({ url: 'recipes' }, FETCH_RECIPES)
1)

This action creator will result in the following action being returned:

© 00 < O U b W N =

O b W N -

Chapter 4. Server Communication 62

Action with custom status handling

{
type: 'API',
payload: {
url: 'recipes',
PEDNING: 'RECIPES_PENDING',
SUCCESS: 'RECIPES_SUCCESS',
ERROR: 'RECIPES_ERROR'
}
};
Authentication

A common place to store the current user’s information (such as the access token) is in the Redux
store. As all our API logic is now located in one place and the middleware have full access to the
store using the getState() method, we can extract the accessToken from the state and set it as a
header for our server requests:

Setting access token

const { accessToken } = getState().currentUser;

if (accessToken) {
// Set headers

All our server calls will now automatically get the correct headers without us having to worry about
this in any other parts of our application.

More Extensions

There are still quite a few things missing from our API middleware to make it usable in the
real world. We need support for more verbs (not just GET), setting of custom headers, timeouts,
caching, and more. Much of this can be done by taking data from the action object or from
the store itself. A robust API middleware solution is already available as (redux-api-middle-
ware)[https://github.com/agraboso/redux-api-middleware].

O© 00 9 O U b W N =

NN
N =~ O

Chapter 4. Server Communication 63

Chaining APIs

Sometimes fetching data from a server requires a number of different calls—for instance, when the
returned data from one is needed to issue additional calls. A simple example might be fetching the
current user and then the user’s profile. If we were to use promises in an action creator, the solution
would appear to be quite straightforward:

Chaining promises

const fetchCurrentUser = () => (dispatch) => fetch(user’)
.then(response => response. json())
.then(userData => {

dispatch(setUserData(userData));

// Get user's profile
fetch(profile/${userData.profileld} ")
.then(response => response. json())
.then(profileData => dispatch(setProfileData(profileData)));

)
};

Scary stuff there. There are a few issues with this code:

« Error handling — Exact branching and catching of errors is not obvious and can become
complex as the chain grows.

+ Debugging - It is hard to debug and understand what stage in the chain we are at.

« Cancellation and recovery — It is nearly impossible to cancel or abort the chain if the user
navigates to a different part of the UI and the current request chain is no longer needed.

As we can see, chaining promises is not an ideal solution. When working with Redux we have two
other alternatives to use, middleware and sagas.

Using Middleware for Flow

In the middleware approach, we split the code handling server access and logic flow. Our API
middleware stays the same, and we only need to find another place to put the logic flow. One
approach, discussed in the Middleware Chapter, is to create additional middleware to handle flow
management:

W N O O & W N =

= U S U
0 3 0 O b ON =~ O

Chapter 4. Server Communication 64

Sample middleware to handle user flow

const userFlowMiddleware = ({ dispatch }) => next => action => {
switch (action.type) {

case FETCH_CURRENT_USER:
dispatch(fetchCurrentUser());
break;

case SET_CURRENT_USER:
dispatch(fetchProfile(action.payload.userld));
break;

b

next(action);

Unfortunately, this approach has its problems too. This setup will cause the fetchProfile() action
to be dispatched every time someone dispatches SET_CURRENT_USER. There might be a flow where
we don’t need the profile fetch but can’t prevent the middleware from scheduling it.

We can solve this problem by creating a special action flow that has similar behavior to fetchCur-
rentUser () but also triggers the fetchProfile() acton. This can be done by creating a new action
creator and action:

Handle flow with custom action

const fetchCurrentUser = (next = SET_CURRENT_USER) => ({
type: API,
url: 'user',

next

});

const userFlowMiddleware = ({ dispatch }) => next => action => {
switch (action.type) {
case FETCH_CURRENT_USER:
dispatch(fetchCurrentUser (SPECIAL_SET_CURRENT_USER);
break;

case SPECIAL_SET_CURRENT_USER:
dispatch(setCurrentUser(action.payload));
dispatch(fetchProfile(action.payload.userld));
break;

};

19
20

<N O O B W N =

0 I O O & W N =~

Chapter 4. Server Communication 65

next(action);

This approach requires changing our action creators in a somewhat unclear way. While it will work,
it might cause bugs if we forget to issue the regular setCurrentUser() call from our special action
handler. On the positive side, it will be much easier to debug as it’s clear exactly what type of fetch
we are performing.

A cleaner approach would be to allow our async action creators to pass an array of actions that the
API middleware needs to dispatch() when a request completes successfully:

Action creator that allows multiple success callbacks

const fetchCurrentUser = (extraActions = []) => ({
type: API,
payload: {
url: 'user',
success: extraActions.concat(SET_CURRENT_USER)
}
1)

API middleware with support for multiple success callbacks

const notify = (data) => {
action.next.each(type => dispatch({ type, data });
¥

fetch(“user/${id}")
.then(response => response. json())
.then(notify)
.catch(error => dispatch(apiError(error)));

This new feature will allow us to clean up the flow middleware:

O = W N -

Chapter 4. Server Communication 66

Handle flow with multiple actions

const userFlowMiddleware = ({ dispatch }) => next => action => {
switch (action.type) {
case FETCH_CURRENT_USER:
dispatch(fetchCurrentUser (FETCH_PROFILE);

break;

case FETCH_PROFILE:
dispatch(fetchProfile(action.payload.userld));
break;

b

next(action);

This approach allows us to fetch the current user with or without a profile update:

Fetch current user with and without a profile update

// Regular current user fetch
dispatch(fetchCurrentUser());

// With profile update
dispatch(fetchCurrentUser (FETCH_PROFILE));

There are a number of suggestions on flow handling in the Middleware Chapter that might make
this flow even simpler to manage—for example, using sagas.

Using Sagas for Flow

A cleaner approach for flow management is using redux-saga®. This library allows us to build
complex asynchronous flow management solutions using sagas and effects. In essence, it uses a
special middleware to add a new actor to the Redux world.

While Redux sagas are not covered in detail in this book, a simple example of using sagas to control
the flow can be seen here:

*https://github.com/redux-saga/redux-saga

https://github.com/redux-saga/redux-saga
https://github.com/redux-saga/redux-saga

© 00 < O U b W N =

[EEY
= o

Chapter 4. Server Communication 67

Using redux saga for flow control

import { call, put } from 'redux-saga/effects'’

export function *fetchCurrentUser() {
while (true) {
yield take(FETCH_CURRENT_USER);

const action = yield take(SET_CURRENT_USER);
yield put(fetchProfile(action.payload.userld));

}
};

In this example we have an endless loop that waits for the FETCH_CURRENT_USER action to be
dispatched. When this occurs, the code starts waiting for the corresponding SET_CURRENT_USER
action. The payload can be used to dispatch a fetchProfile() action to get the corresponding profile
from the server.

This is a very basic example of saga usage and does not handle error or allows to cancel requests
of flows. For more information on sagas, consult the extensive documentation at the official redux-
saga documentation site®'.

Canceling APl Requests

During the app’s flow we might issue a number of long requests that we need to cancel (e.g., when
the user navigates to a different page of the app). Some promise implementations support this feature,
but it is also quite doable with the API middleware approach.

To allow canceling we need to give a unique ID to each request being sent and keep it for the
cancellation phase. This will require us to add ID support to our action creators:

*'http://redux-saga.github.io/redux-saga/index.html

http://redux-saga.github.io/redux-saga/index.html
http://redux-saga.github.io/redux-saga/index.html
http://redux-saga.github.io/redux-saga/index.html

© 00 < O U b W N =

W N -

0 I O O b W N =~

(AN
N O O

Chapter 4. Server Communication 68

Action creator with ID support

const fetchUser = (id, cancelable) => ({
type: API,
url: ‘“user/${id}",
next: SET_USER,
cancelable

});

const actionlId = uuid.generate();
dispatch(fetchUser (100, actionlId));

In this code we used a fake uuid.generate() function; there are a number of different implemen-
tations of such a function, with a simple one being a global counter.

If at a later stage we want to cancel a particular API request, we will need to dispatch a special
action to our middleware with the ID generated for the original action being canceled:

Action to cancel an API request

const cancelAPI = (id) => ({
type: CANCEL_API,
id

1)

To handle this in our API middleware, we must either cancel the promise (when using implemen-
tations that support this feature) or let the request finish and ignore the response (simply dispatch
nothing):

API middleware with cancellation support

const canceled = {};
const apiMiddleware = ({ dispatch }) => next => action => {
const handleResponse = (data) => {

if (action.cancelable && canceled[action.cancelable]) {

return;

dispatch({ type: action.next, data });
1

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Chapter 4. Server Communication 69

switch (action.type) {
case API:
fetch(BASE_URL + action.url)
.then(response => response. json())
.then(handleResponse)
);

return;

case CANCEL_API:
canceled[action.id] = true;
setTimeout(() => delete canceled[action.id], 5000);

return next(action);

b

To implement this functionality, we simply added an object with keys corresponding to canceled
requests. The setTimeout() function is used to clear canceled requests after 5 seconds to prevent
the object from filling up needlessly.

With this functionality we can cancel requests at any time and not have to worry about request
completion happening long after the user has navigated away from the original location in the app
or after a later request has completed (for example, two consecutive filter requests for data being
sent and the first one returning after the latter one).

Summary

In this chapter we have learned how to set up a comprehensive mechanism for server commu-
nication. We have used Redux’s concept of middleware to move most of the complicated and
asynchronous logic away from our action creators and created a single place where error handling,
caching, and other aspects of server requests can be concentrated.

In the next chapter we will cover WebSocket based communication and how well it can work with
the Redux architecture.

Chapter 5. WebSockets

WebSockets have brought a robust socket communication method directly into our browsers. What
started as a solution for polling data changes on the server is slowly taking over more and more
responsibilities from traditional REST endpoints. The action-based architecture of Redux makes
working with WebSockets exceptionally easy and natural, as it involves using WebSockets as a pipe
to pass actions to and from the server.

Basic Architecture

WebSockets allow us to open a connection to a server and send or receive messages in a fully
asynchronous way. The native implementation in browsers has only four callback methods that
are required to fully support WebSockets:

« onopen — A connection has become active.

« onclose — A connection has been closed.

« onerror — An error related to WebSocket communication has been raised.
« onmessage — A new message has been received.

While multiple WebSockets might be used, most applications will require a single one or at most a
few connections for different servers based on function (chat server, notifications server, etc.).

To start, we will build a system to communicate with a single WebSocket, which can later be
extended for multi-WebSocket support.

Redux Link

The general Redux architecture is all about sending well-defined messages to the store. This same
scheme can work perfectly for server communication over WebSockets. The same structure of plain
objects with the type property can be sent to the server, and we can receive a similarly structured
response back:

0 = O O b W N =~

Chapter 5. WebSockets 71

Sample communication flow

> TO-SERVER: { type: 'GET_USER', id: 100 }
< FROM-SERVER: { type: 'USER_INFO', data: { ... }}

A more robust example might be a chat server, where we can dispatch to the store a message similar
to: { id: 'XXX’, type: 'ADD_MESSAGE', msg: 'Hello' }.Our store can handle this immediately
by adding the message to the current messages array and send it “as is” over a WebSocket to the
server. The server, in turn, can broadcast the message to all other clients. Each will get a perfectly
standard Redux action that can be passed directly to their stores.

This way our frontend can use Redux actions to pass information between browser windows and
machines, using the server as a generic dispatcher. Our server might do some additional work, like
authentication and validation to prevent abuse, but in essence can serve as a message passer.

An ideal WebSocket implementation for Redux would allow us to dispatch() actions and have
them smartly routed to the server when needed, and have any actions coming from the WebSocket
be dispatched directly to the store.

Code Implementation

As with any infrastructure-related code, middleware is the perfect place for our WebSocket
implementation. It will allow us to catch any actions that are required to be sent over the WebSocket
and dispatch() anything coming from the server.

Basic structure of a WebSocket setup

const WS_ROOT = "ws://echo.websocket.org/";

const websocket = new WebSocket(WS_ROOT);

websocket .onopen = () = {};
websocket.onclose = () => {};
websocket.onerror = event => {};

websocket.onmessage = event => {};

To make the code more readable, we can replace the four different assignments with a single use of
Object.assign() and use code similar to this:

O O b W N~

0 I O O P W N =

Chapter 5. WebSockets 72

Using Object.assign

Object.assign(websocket, {

onopen() {1}
onclose() {31,
onerror(e) {3,

{}

onmessage(e)

1)

In our middleware, we want to make sure a WebSocket is created only once. Thus, we cannot put
the setup code inside the action handler:

The wrong way to initialize in middleware

const wsMiddleware = ({ dispatch, getState }) => next => action => {
// Initialization not allowed

};

The code in the innermost block gets called every time an action is dispatched, so this would cause
our setup and WebSocket creation code to be called multiple times. To prevent this, we can do the
initialization outside the action callback block:

Correct way to initialize in middleware

const wsMiddleware = ({ dispatch, getState }) => next => {
// TODO: Initialization

return action => {
// TODO: Middleware code
¥
1

Let’s get back to the initialization code and consider how to handle each of the four callbacks: onopen,
onclose, onerror, and onmessage.

onopen

This is mainly an informative stage; we need to indicate to ourselves that the socket is ready to send
and receive data and might choose to notify the rest of the Redux application that the socket is ready
(perhaps to show some indication in the UI).

Once the socket is open, we dispatch a simple { type: 'WS_CONNECTED' } action to notify the rest
of Redux:

Chapter 5. WebSockets 73

Handling onopen

websocket .onopen = () => dispatch(wsConnected());

The wsConnected() function is a simple action creator that should be implemented in one of the
action creator files:

app/actions/ui.js

import { WS_CONNECTED } from 'consts/action-types';

const wsConnected = () => ({ type: WS_CONNECTED });

onclose

The close or disconnect event is very similar to onopen and can be handled in the exact same way:

Handling onclose

websocket.onclose = () => dispatch(wsDisconnected());

onerror

The WebSocket implementation in a browser can provide information on various failures in the
underlying socket communication. Handling these errors is similar to handling regular REST API
errors, and might involve dispatching an action to update the UI or closing the socket if needed.

In this example we will stop at a generic console.log() and leave it to the reader to consider more
advanced error handling methods:

Handling onclose

Websocket .onerror = (error) =>
console.log("WS Error", error.data);

onmessage

This callback is called every time a new message is received over a WebSocket. If we have built our
server to be fully compatible with Redux actions, the message can simply be dispatched to the store:

O b W N -

© 00 N O U b W N =

Y
(]

Chapter 5. WebSockets 74

Handling onmessage

websocket .onmessage = (event) => dispatch(JSON.parse(event.data));

Handling Outgoing Messages and Actions

With all the WebSocket callbacks handled, we need to consider how and when to pass actions from
Redux to the server:

return action => {

// TODO: Pass action to server

next(action);

};

Before sending any actions, we need to make sure that the WebSocket is open and ready for
transmissions. WebSockets have a readyState property that returns the current socket status.

Check if the socket is open

const SOCKET_STATES = {
CONNECTING: 0,
OPEN: 1,
CLOSING: 2,
CLOSED: 3

b

if (websocket.readyState === SOCKET_STATES.OPEN) {
// Send

Even when the socket is open, not all actions need to be sent (for example, the TAB_SELECTED or
REST_API_COMPLETE actions), it is best to leave the decision of what to send to our action creators.
The standard way to provide special information about actions to middleware is to use the meta key
inside an action. Thus, instead of using a regular action creator:

D W N -

O = W N =

O© 00 9 O U b W N =

Chapter 5. WebSockets

A regular action creator

75

export const localAction = (data) => ({
type: TEST,
data

1)

we can add special information to the metadata part of the action:

An action creator for an action to be sent to the server

export const serverAction = (data) => ({
type: TEST,
data,
meta: { websocket: true }

});

This way our middleware can use the meta.websocket field to decide whether to pass the action on

or not:

Sending actions to the server

return action => {
if (websocket.readyState === SOCKET_STATES.OPEN &&
action.meta &&
action.meta.websocket) ({
websocket .send(JSON.stringify(action));

next(action);

};

Note, however, that this code might cause a surprising bug. Since we are sending the whole action
to the server, it might in turn broadcast it to all other clients (even ourselves). And because we didn’t
remove the action’s meta information, the other clients’ WebSocket middleware might rebroadcast

it again and again.

A Redux-aware server should consider stripping all meta information for any action it receives. In
our implementation we will remove this on the client side, though the server should still do the

check:

0 N O O B~ W N -

(RN
N »~ O ©

0 N O O &~ W N -

B R S s sy
O© 00 1 O O » WO N~ O ©

Chapter 5. WebSockets 76

Sending actions to the server (without metadata)

return next => action => {
if (websocket.readyState === SOCKET_STATES.OPEN &&
action.meta &&
action.meta.websocket) ({

// Remove action metadata before sending
const cleanAction = Object.assign({}, action, { meta: undefined });
websocket .send(JSON.stringify(cleanAction));

next(action);

};

Using this approach, sending actions to our server via a WebSocket becomes as simple as setting the
meta.websocket field to true.

Complete WebSocket Middleware Code

middleware/ws.js

import { wsConnected, wsDisconnected } from 'actions';
import { WS_ROOT } from 'const/global';

const SOCKET_STATES = {
CONNECTING: 0,
OPEN: 1,
CLOSING: 2,
CLOSED: 3

¥
const wsMiddleware = ({ dispatch }) => next => {
const websocket = new WebSocket(WS_ROOT);

Object.assign(websocket, {
onopen() {
active = true;
dispatch(wsConnected())
}

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Chapter 5. WebSockets 77

onclose() {
active = false;
dispatch(wsDisconnected())

}/

onerror(error) f{
console.log(WS Error: ${ error.data }°);

},

onmessage(event) {
dispatch(JSON.parse(event.data));
}
1)

return action => {
if (websocket.readyState === SOCKET_STATES.OPEN &&
action.meta &&
action.meta.websocket) {

// Remove action metadata before sending
const cleanAction = Object.assign({}, action, {
meta: undefined

});
websocket .send(JSON.stringify(cleanAction));

next(action);

};

export default wsMiddleware;

Authentication

Handling authentication with WebSockets might be a little tricky as in many applications, WebSock-
ets are used alongside regular HTTP requests. The authentication will usually be done via regular
REST or OATH calls and the frontend granted a token - either set in cookies or to be saved in
LocalStorage.

To allow the server to authenticate a WebSocket, a special - agreed upon action - needs to be sent
by the client. In the case of Redux, a special action object can be serialized and sent before doing
any other work over WebSockets.

© 00 N O U b W N =

[EEEN
N =~ O

O O b W N =

Chapter 5. WebSockets 78

Sample Flow

A simple way to implement authentication might be to send an API action to our server containing
an email and a password:

Sample action to authenticate with the server

dispatch({
type: API,
payload: {
url: 'login',
method: 'POST',
success: LOGIN_SUCCEESS,
data: {
email: 'info@redux-book.com',
password: 'top secret'

}
});

If successful, our API Middleware will dispatch the LOGIN_SUCCESS action containing the informa-
tion returned from the server:

Action dispatched on successful login

{
type: LOGIN_SUCCEESS,
payload: {
token: 'xxxYYYzzzz'
}
}

Our user’s reducer will probably act on this action to add the token to the state - to be passed in
headers of future API requests to the server.

To make WebSockets authenticate using this token, we can add special code to our WebSocket API
that will check for LOGIN_SUCCESS (and LOGOUT_SUCCESS)

0w I O O b W N =

B s s
D W NN, O

0 I O O b W N =

[G
D WD, O

Chapter 5. WebSockets 79

Authentication code in the WebSocket middleware

if (action.type === LOGIN_SUCCESS) {
dispatch({
type: WEBSOCKET_AUTH,
payload: action.payload.token,
meta: { websocket: true }

});

if (action.type === LOGOUT_SUCCESS) {
dispatch({
type: WEBSOCKET_LOGOUT,
meta: { websocket: true }

});

Now the passage of LOGIN_SUCCESS will cause a new WebSocket enabled action to be dispatched
and processed by our middleware to authenticate with the server.

The flow of actions

> Store:
{ type: API, payload: ... }

> Server:
POST http://.../login

> Store:
{ type: LOGIN_SUCCESS, payload: token }

> Store:
{ type: WEBSOCKET_AUTH, payload: token, meta: { websocket: true }}

> WebSocket:
{ type: WEBSOCKET_AUTH, payload: token }

Notes

For a full flow of the WebSocket middleware, it would be best to keep track of the authentication
state of the WebSocket and prevent actions from being sent or received before the WebSocket has
been authentication or after it has been logged out from.

Chapter 5. WebSockets 80

When the token is already present in cookie it will be passed to WebSocket as soon as the socket
is openned. This might cause problems if the login process happens after the application loads. Or
even worse, when the user logs out our WebSocket might still stay authenticated. It is better to use
the action based authentication approach described above to avoid these and similar issues.

Summary

This chapter has illustrated how well WebSockets work with Redux and the practical steps needed
to set up WebSocket-based communication.

In the next chapter we will cover the subject of testing and how each part of our Redux application
can be tested separately and together.

Chapter 6. Tests

One of the key strengths of Redux is its ease of testability. To fully automate the testing suite, we
can create unit tests for each of the different actors (reducers, action creators, and middleware) and
combine them together for comprehensive integration tests.

There are a large number of testing tools available, but the exact tooling is less important as
most parts of our Redux application will rely on plain JavaScript functions and objects with no
complicated libraries or async flows to test.

As our testing framework we will be using the excellent Jest*” library from Facebook, the latest
version of which proves to be an excellent choice for testing Redux. Using other frameworks and
tools such as Karma, Mocha, and so on should look very similar to the examples in this chapter.

To find the best way to add Jest to your project and operating system, please follow
Jest’s getting started guide®.

Test Files and Directories

To start off we need a way to organize our tests. There are two main approaches: putting the tests
together in the same directory with the implementation files, or putting them in a separate directory.
In this guide we will use the latter. The choice is a matter of convenience and personal preference,
with the only side effects being different test runner configurations.

We will create a separate test file for each implementation file in our project. In the case of
app/actions/recipes.js, our test file will be tests/actions/recipes.test.js.

Test File Structure

In our test files we will use a describe() function to wrap all our tests. The first string parameter
in this function will allow us to easily determine which group of tests are failing or succeeding:

**https://facebook.github.io/jest/
Shttps://facebook.github.io/jest/#getting-started

https://facebook.github.io/jest/
https://facebook.github.io/jest/#getting-started
https://facebook.github.io/jest/
https://facebook.github.io/jest/#getting-started

© 00 39 O O b W N =~

O O b W N~

Chapter 6. Tests 82

Sample test file structure

describe('actions', () => {
// TODO: Add tests
1)

Inside this function other nested describe() functions can be used, to further distinguish between
different sets of states (for example, testing failing or succeeding API calls).

Each test in Jest is wrapped within an it() block describing what the test does. To keep the tests
readable and easy to understand, it is generally recommended to create as many short tests as
possible (each within its own it() block) rather than creating very large single test functions:

Sample test file with test placeholders

describe('actions', () => {
it('should create an action to add a todo', () => {
// TODO: Implement test

});

it('should create an action to delete a todo', () => {
// TODO: Implement test

1)

1)

Testing Action Creators

Throughout this book we have tried to keep asynchronous flows out of action creators by moving
them into middleware and utility functions. This approach allows for very easy testing of action
creators, as they are functions that simply return plain JavaScript objects:

Simple action creator

import * as actions from 'constants/action-types';

export const setRecipes = (recipes) => ({
type: actions.SET_RECIPES,
payload: recipes

1)

Our setRecipes() action creator receives a single parameter and creates a plain JavaScript object
in return. Since there is no control flow logic or side effects, any call to this function will always
return the same value, making it very easy to test:

[N

© © 0 N O O b W N =~

Chapter 6. Tests 83

Simple test for setRecipes

import * as actions from 'actions'

describe('actions', () => {
it('should create an action to add a todo', () => {
const expected = { type: 'ADD_RECIPE', payload: 'test' };
const actual = actions.addRecipe('test');

expect(actual).toEqual (expected);

1)
});

This test is built in three parts. First, we calculate what our action creator should return when called
with 'test' asan argument—in this case a JavaScript object containing two keys, type and payload:

Calculate expected result

const expected = { type: 'ADD_RECIPE', payload: 'test' };

The second stage is running the action creator actions.addRecipe('test') to get the value built
by our action creator’s implementation:

Calculate actual result

const actual = actions.addRecipe('test');

And the final stage is using Jest’s expect() and toEqual() functions to verify that the actual and
expected results are the same:

Verify results match

expect(actual).toEqual (expected);

If the expected and actual objects differ, Jest will throw an error and provide information describing
the differences, allowing us to catch incorrect implementations.

Improving the Code

Due to the simplicity of this code, it is common to combine multiple stages into a single call and
rewrite the test as follows:

O = W N =

O O W W N =~

Chapter 6. Tests 84

Shorter version of the test

it('should create an action to add a recipe', () => {
const expected = { type: 'ADD_RECIPE', payload: 'test' };

expect(actions.addRecipe('test')).toEqual(expected);
1)

Using Snapshots

The approach of calculating the expected value and then comparing it to dynamically calculated
values is very common in Redux tests. To save typing time and make the code cleaner to read, we
can use one of Jest’s greatest features, snapshots.

Instead of building the expected result, we can ask Jest to run the expect () block and save the result
in a special .snap file, generating our expected object automatically and managing it for us:

Test with snapshot

it('should create an action to add a recipe', () => {
expect(actions.addRecipe('test')).toMatchSnapshot();
1)

The expected calculation is gone, and instead of using isEqual(), Jest will now compare the result
of the expression inside expect() to a version it has saved on disk. The actual snapshot is placed in
a __snapshots__ directory in a file with the same name as the test file plus the .snap extension:

snapshots/action.test.js.snap

exports[actions should create an action to add a recipe 1°] =
Object {

"payload": "test",

"type": "ADD_RECIPE",

**https://facebook.github.io/jest/docs/tutorial-react.html#snapshot-testing

https://facebook.github.io/jest/docs/tutorial-react.html#snapshot-testing
https://facebook.github.io/jest/docs/tutorial-react.html#snapshot-testing

W N -

O &= W N =

Chapter 6. Tests 85
The structure is more complicated than that of a regular JavaScript object, but the result is exactly
the same as our original expected calculation:

Calculate expected result
const expected = { type: 'ADD_RECIPE', payload: 'test' };

What happens when our code changes? In some cases we want to intentionally change
the structure of our action object. In these cases, Jest will detect that the returned value
does not match what is saved inside its snapshot file and throw an error. But if we
determine that the new result is the correct one and the cached snapshot is no longer
valid, we can easily tell Jest to update its snapshot version to the new one.

Dynamic Action Creators

In some cases, action creators might contain logic that emits different action objects based on its
input parameters. As long as no asynchronous code or other external entities (like localStorage)
are touched, we can easily test the logic by providing different input parameters to the action creator
and verifying it creates the correct object every time:

An action creator that modifies the input

export const addRecipe = (title) => ({
type: actions.ADD_RECIPE,
payload: title || "Default"

1)

The modified addRecipe() action creator will set payload to "Default" if the user does not provide
a title. To test this behavior we can create two tests, one that provides a parameter (as we already did)
and one that provides an empty string. A fully comprehensive test might contain multiple “empty
string” cases, for null, undefined, and ' ':

Combined test of multiple emptystring input values

it('should add recipe with default parameter', () => {
expect(actions.addRecipe(undefined)).toMatchSnapshot();
expect(actions.addRecipe(null)).toMatchSnapshot();
expect(actions.addRecipe('')).toMatchSnapshot();

1)

In contrast to what we discussed earlier, here we tried putting multiple expect() functions into the
same test. While this approach will work, it will be harder to identify which of the test cases failed
in the event of an error.

Since we are using JavaScript to write our tests, we can easily create test cases for each input value
without increasing our code size significantly (by creating an it() clause for each). We can do that
by adding all the possible inputs into an array and automatically creating corresponding it () blocks:

D W N -

© 00 N O U b W N =

Y
(]

Chapter 6. Tests 86

Automatically create tests for each test case

[undefined, null,].forEach((param) =>
it(should add recipe with default parameter ${param}” , () => {
expect(actions.addRecipe(param)).toMatchSnapshot()

1)

Using this approach we get three different it() blocks automatically generated by JavaScript,
keeping our tests clear and the code short.

Async Action Creators

Throughout this book we have tried to discourage the use of asynchronous action creators and
functions that have side effects and have used various libraries like redux-thunk?® to allow action
creators to schedule async work and be non-idempotent. One of the main benefits is the ease of
testing regular action creators offer—more information on this can be found in the Action Creators
Chapter.

For our example we will create a simple async action creator that uses redux-thunk and the fetch()
API to get recipe data from a server and dispatches the result with a SET_RECIPE action:

Async action creator

export const setRecipe = (id, data) => ({
type: actions.SET_RECIPE,
payload: { id, data }

1)

export const fetchRecipe = id => dispatch => {
return fetch('recipe/' + id)
.then(response => response. json())
.then(json => dispatch(setRecipe(id, json)))
}s

With redux-thunk, our action creators can return a function instead of a plain JavaScript object.
The thunk middleware will call such a function and pass it the store’s dispatch() and getState()
methods. This allows the action creator to use the async fetch() API to get data from the server
and dispatch an action when it’s done using dispatch().

*https://github.com/gaearon/redux-thunk

https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk

©O© 00 N O U b W N =

W N -

O b W N -

Chapter 6. Tests 87

Stubbing fetch()

Before we move on to the actual tests, we need to lay out some infrastructure for stubbing the
fetch() APIL We are going to create a mock response object and then stub the fetch() API on our
window object:

Create a fake response object

export const mockResponse = (status, statusText, response) => {
return new window.Response(response, {
status: status,
statusText: statusText,
headers: {
'"Content-type': 'application/json'
}
});
1

Stub a successful fetch

export const mockFetch = (status, data) => {
window. fetch = jest.fn().mockImplementation(
() => Promise.resolve(mockResponse(status, null, data)));

};

Stub a failing fetch
export const mockFetchError = (state, error) => {

window. fetch = jest.fn().mockImplementation(
() => Promise.reject(mockResponse(state, error, '{}'))
)i
b

The mock fetch() call will return a resolved promise that is similar to the real result from a fetch()
call:

Sample mocked fetch code
mockFetch(200, '{"key":"value"}');
fetch('test. json')

This code will allow us to call mockFetch() or mockFetchError(), causing the next call to fetch()
to return with our mocked response. The only issue with this implementation is that it stubs all the
fetch() calls in the system, regardless of the URL.

Since the first parameter to fetch() is the URL, we can use the common handleResponse() function
to first verify that the URL passed to fetch() is the URL we have stubbed:

0 = O O b W N =~

SN =Y
<N O O WO N r OO O

W N -

Chapter 6. Tests 88

Stubbing with URL verification

const handleResponse = (mockedUrl, response) =>
window. fetch = jest.fn().mockImplementation(url => {
if (url === mockedUrl) {
return response;

}
throw('Unknown URL: ' + url);
1)
export const mockFetch = (mockedUrl, status, data) =>
handleResponse(
mockedUr1,

Promise.resolve(mockResponse(status, null, data)));

export const mockFetchError = (mockedUrl, state, error) =>
handleResponse(
mockedUr1,
Promise.reject(mockResponse(state, error, '{}')));

Creating a Mock Store

Unlike simple action creators, our code now relies on dispatch() being used, which forces us to
create a mock instance of a store. To do so, we will use the redux-mock-store®® library:

Create a mock store

import configureStore from 'redux-mock-store’;
import thunk from 'redux-thunk';

const mockStore = configureStore([thunk]);

Here we create a mock store object with a single thunk middleware. This store object can be used
as a regular Redux store; it supports dispatching of actions and will later allow us to assert that the
correct set of actions was sent to our store.

Async Action Creator Test Structure

Since async action creators might contain different flows based on the result of the async action, it
is best to put them into their own describe() blocks in the tests. This will also allow us to easily
create a fresh “mock store” for each of the test cases using Jest’s be foreEach() method:

https://github.com/arnaudbenard/redux-mock-store

https://github.com/arnaudbenard/redux-mock-store
https://github.com/arnaudbenard/redux-mock-store

D W N~

Chapter 6. Tests 89

Structure of an async test block

describe('fetch recipe', () => {
let store;

beforeEach(() => store = mockStore({}));

it('should fetch recipe if it exists');

});

Our mock store gets automatically re-created before each iteration of the tests, clearing any actions
cached from the previous run.

Basic Async Action Creator Test

Jest handles async tests by allowing us to return a promise as the test’s result. If a promise is returned,
the test runner will wait for the promise to resolve and only then continue to the next test:

Async test

it('should fetch recipe if it exists', () => {
return store.dispatch(actions. fetchRecipe(100));

});

Since store.dispatch() in this case returns a promise (remember our fetchRecipe() action creator
returns a call to the fetch() API), we can use it to create an async test.

To add an expect() clause to the code, we can use the same promise and run our tests as soon as it
is resolved:

Adding expect calls to async tests

it('should fetch recipe if it exists', () => {
return store.dispatch(actions. fetchRecipe(100))
.then(() => expect(store.getActions()).toEqual([]))

1)

The expect () clause is similar to what we used in our previous tests. We are using the mocked store’s
getActions() method to get an array of all the actions dispatched to the store. In our implementation
we expect a successful call to fetch() to dispatch the result of the setRecipe() action creator.

Running this test now will fail, since we didn’t mock the fetch() APL Using the small utility library
we created previously, we can create the mock that will result in the correct action sequence:

O O b W N -

Chapter 6. Tests 90

Full async test

it('should fetch recipe if it exists', () => {
mockFetch('recipe/100', 200, '{"title":"hello"}');

return store.dispatch(actions. fetchRecipe(100))
.then(() => expect(store.getActions()).toMatchSnapshot())
1)

Here we mock a 200 successful response from the fetch() API and expect that dispatching the async
action created by fetchRecipe(100) results in a later dispatch of the action created by setRecipe().

Async Tests Summary

As can be seen from this minimal example, testing async action creators is much more complicated
than testing regular action creators. If we add proper error handling and branching, the tests quickly
become very hard to reason out and build.

The Middleware Chapter offers an alternative to async action creators by moving the asynchronous
logic into middleware. This allows us to test and concentrate all the async code of an application in
a single place.

Reducer Tests

Testing reducers is very similar to testing action creators, as reducers by definition are idempotent
(given a state and an action, the same new state will be returned every time).

This makes reducer tests very easy to write, as we simply need to call the reducer with different
combinations of input to verify the correctness of the output.

Basic Reducer Test

For our test, we can create a very crude reducer that handles a single ADD_RECIPE action and whose
state is simply an array of recipes:

Chapter 6. Tests 91

Simple recipes reducer

1 import { ADD_RECIPE } from 'consts.js';
2
3 const reducer = (state = initialState, action) => {
4 switch(action.type) {
) case ADD_RECIPE:
6 return state.concat({ title: action.payload });
7 }
8
9 return state;
10 };
11
12 export default reducer;
There are two main test cases to consider, adding a recipe to an empty list and a non-empty one. We
can test the first case as follows:
Simple recipes reducer test
1 import reducer from 'reducers/recipes’;
2
3 import { ADD_RECIPE } from 'consts';
4
5 describe("recipes reducer", () => {
6 it('should add recipe to empty list', () => {
7 const initialState = [];
8 const action = { type: ADD_RECIPE, payload: 'test' };
9 const expected = [{ title: "test" }];
10 const actual = reducer(initialState, action);
11
12 expect(actual).toEqual (expected);
13 1)

14 };

0 N O O & W N =

Chapter 6. Tests 92
The steps taken here should already be familiar:

Calculate the initial state (an empty array in our case).

Build the action to send.

Set the expected state the reducer should return.

Call reducer() to calculate the state based on the empty array and our action.
Verify that the actual and expected states match.

AR A e

Calculating the initial state

Before we simplify the code, let’s consider the second test case, adding a recipe to a non-empty list:

Test of adding a recipe to a non-empty list

it('should add recipe to non-empty list', () => {
const initialState = [{ title: "first" }];

const action = { type: ADD_RECIPE, payload: 'test' };
const expected = [{ title: "first" }, { title: "test" }];
const actual = reducer(initialState, action);

expect(actual).toEqual (expected);
1)

In this test we start with a list containing a single item and update our expected result to match.
While this works, it has a maintenance problem. What will happen if our recipes contain more fields
in the future?

Using this method of writing tests, we will need to find each test definition’s initial state and add
more properties to it. This complicates the test writer’s job without providing any benefits. Luckily,
we already have a way to create non-empty states: the reducer! Since we already tested adding to an
empty list in the first test, we can rely on our reducer to create a non-empty list with all the required
recipe information:

Build initial state using the reducer

const initialState = reducer([], { type: ADD_RECIPE, payload: 'first' });

This only partially solves the problem, though, as we are still treating the initial state as an empty
array ([]). While this is true in our test case, other reducers might have more complicated structures
to deal with. A simple solution would be to create a const initialState = {} at the root of the
tests and rely on it when needed:

O = W N =

Chapter 6. Tests 93

Set initial state for all tests

describe("recipes reducer", () => {
const initialState = [];

it('should add recipe to empty list', () => {

const action = { type: ADD_RECIPE, payload: 'test' };
const expected = [{ title: "test" }];
const actual = reducer(initialState, action);

expect(actual).toEqual (expected);

1)
it('should add recipe to non-empty list', () => {
const testState = reducer(initialState, { type: ADD_RECIPE, payload: 'fir\
st' });

{ type: ADD_RECIPE, payload: 'test' };
[{ title: "first" }, { title: "test" }];
reducer (testState, action);

const action

const expected

const actual

expect(actual).toEqual (expected);
1)
3

The same initialState is used in all the tests, but it is still hardcoded in our test file. If our reducer
changes the way state is built, we will be forced to update the test files accordingly. To remove this
dependency we can rely on a feature that is forced by Redux’s combineReducers(). It mandates that
any reducer called with an undefined state must return its part of the initial state structure:

Excerpt from our reducer

const initialState = [];

const reducer = (state = initialState, action) => {

b

This means we can use the reducer to get the initial state to use for all of our tests, simply by calling
it with undefined and any action:

0 N O O b W N =~

N G EN
O O b W N~ OO O

Chapter 6. Tests 94

Generate the initial state using our reducer

const initialState = reducer(undefined, { type: 'INIT' });

The result will put the same [] in the initial state, but now any changes to what the reducer considers
to be the initial state will be automatically picked up by the tests as well.

Making the Tests Pretty

Now that we’ve solved all the functionality issues, we can use the same tricks we used in the action
creator tests to simplify our reducer tests. Here are the original tests:

Original tests

it('should add recipe to empty list', () => {
const action = { type: ADD_RECIPE, payload: 'test' };
const expected = [{ title: "test" }];

expect(reducer(initialState, action)).toEqual(expected);

1)

it('should add recipe to empty list', () => {
const baseState = reducer(initialState,
{ type: ADD_RECIPE, payload: 'first' });

const action = { type: ADD_RECIPE, payload: 'test' };
const expected = [{ title: "first" }, { title: "test" }];
const actual = reducer(baseState, action);

expect(actual).toEqual (expected);
1)

The first step will be to combine action, actual, and expect() into a single line:

0 N O O B~ W N -

B s
O » W N =~ O ©

0 N O O B~ W N -

(RN
N »~ O ©

Chapter 6. Tests 95

Simplified tests

it('should add recipe to empty list', () => {
const expected = [{ title: "test" }];

expect(reducer(initialState, { type: ADD_RECIPE, payload: 'test' }))
.toEqual (expected);
1);

it('should add recipe to empty list', () => {

const baseState = reducer(initialState, { type: ADD_RECIPE, payload: 'first' }\
)i

const expected = [{ title: "first" }, { title: "test" }];

expect(reducer(baseState, { type: ADD_RECIPE, payload: 'test' }))
.toEqual (expected);

});

The second step is to use Jest’s snapshots instead of manually calculated expected values:

Simplified tests, stage 2

it('should add recipe to empty list', () => {
expect(reducer(initialState, { type: ADD_RECIPE, payload: 'test' }))
.toMatchSnapshot()

1)

it('should add recipe to empty list', () => {
const baseState = reducer(initialState, { type: ADD_RECIPE, payload: 'first' }\
);

expect(reducer(baseState, { type: ADD_RECIPE, payload: 'test' }))
.toMatchSnapshot();

});

Avoiding Mutations

One key requirement is that our reducers never modify the state, but only create a new one.
Our current tests do not catch these issues (try changing .concat() to .push() in the reducer
implementation).

© © 0 N O U b W N =

-

Chapter 6. Tests 96

While we can try to catch these mistakes by manually verifying that the initial state did not change,
a simpler approach would be to “freeze” the initial state and have any changes to it automatically
stop the tests. To achive this we can use the excellent deep- freeze?’ library, installed as follows:

Installing deep-freeze

npm install deep-freeze --save

To use deep- freeze, we wrap our initial state with a call to deepFreeze():

Using deep-freeze

import deepFreeze from 'deep-freeze';

const initialState = deepFreeze(reducer(undefined, { type: 'INIT' }));

Any attempt by any parts of our code to modify initialState will now automatically throw an
error:

Automatically catch change attempts

initialState.push('test');
> TypeError: Can't add property 0, object is not extensible

To ensure that our reducers never change the original state, we can always call deepFreeze() on
the state passed as the first parameter to a reducer:

Updated add to non-empty list test

it('should add recipe to empty list', () => {
const baseState = reducer(initialState, { type: ADD_RECIPE, payload: 'first' }\
);

expect(reducer(
deepFreeze(baseState),
{ type: ADD_RECIPE, payload: 'test' }
)
) .toMatchSnapshot();

});

*"https://github.com/substack/deep-freeze

https://github.com/substack/deep-freeze
https://github.com/substack/deep-freeze

O© 00 9 O O b W N =

Chapter 6. Tests 97

Action Creators and Reducers

Usually when writing unit tests it is recommended to test each part of the system separately and
only test connections and interfaces in the integration tests. In the case of Redux, though, it is worth
considering the connection between action creators and reducers.

In the current way we’ve built our tests, the ADD_RECIPE action object is defined in three different
places: the recipe’s action creators, the recipe’s tests, and the reducer’s tests.

If, in the future, we decide to change the structure of the ADD_RECIPE action, our action creator tests
will catch the change and remind us to update the test code. But the reducer’s tests will continue to
pass unless we remember to change the hardcoded ADD_RECIPE action objects used in those tests as
well.

This can lead to painful edge cases where all the tests pass, but the system doesn’t work. To avoid
this, we can stop using hardcoded action objects in reducers and rely on action creators directly:

Reducer tests modified to use action creators directly

it('should add recipe to empty list', () => {
expect(reducer(initialState, addRecipe('test'))).toMatchSnapshot()
1)

it('should add recipe to empty list', () => {
const baseState = deepFreeze(reducer(initialState, addRecipe('first')));

expect(reducer(baseState, addRecipe('test'))).toMatchSnapshot();
1)

While somewhat breaking the unit test principle, combining the reducers with action creators results
in cleaner code, fewer bugs, and less duplication.

Unknown Actions

One last issue to test with reducers is that they gracefully handle unknown actions and return the
original state passed to them without modifications.

Since every action can propagate to the whole reducer tree, it is important for the
reducer to return the original state and not a modified copy. This will allow UI libraries
to identify changes in the tree using reference comparison.

We can do this as follows:

O© 00 O U b W N =

[N
(]

<N O O & W N =

Chapter 6. Tests 98

Unknown actions test

it('should handle unknown actions', () => {
expect(reducer(initialState, { type: 'FAKE' })).toBe(initialState);
1)

An important thing to note about this test is the use of .toBe() instead of .toEqual() or
.toMatchSnapshot (). Unlike the other methods, .toBe() expects the result of the reducer to be
the exact same object, not a similar object with the same data:

Example use of toBe

const a = { name: 'Kipi' };

const b { name: 'Kipi' };

it('passing test', () => {
expect(a).toEqual(b);

1)

it('failing test', () => {
expect(a).toBe(b);
1)

The main goal of this test is to verify that our reducer returns the original state if the action sent
was not intended for it:

Correct reducer code

const reducer = (state = initialState, action) => {
switch(action.type) {
case ADD_RECIPE: return state.concat({ title: action.payload })
}

return state;

b

Testing Middleware

Middleware are where most of the complex logic of our application will reside. Since they have full
access to the store’s dispatch() and getState() methods as well as control over the actions’ flow
via next (), middleware can become quite complex with nontrivial asynchronous flows.

B W N - ©O© 00 N O O & W N

S © W I O O b W N =

[N

Chapter 6. Tests 99

Middleware Test Structure

At their core middleware are functions that receive actions to process, albeit with a complicated
signature (a function, returning a function, returning a function). The first two function calls are
made by Redux during startup. Only the last call is made dynamically, when new actions need to
be processed. The basic signature looks like this:

Middleware signature

function sampleMiddleware({ dispatch, getState }) {
return function nextWrapper(next) {
return function innerCode(action) {
// TODO: Implement the middleware

next(action);

To test middleware we will need to mock dispatch(), getState(), and mock() and call sampleMid-
dleware() and nextWrapper() to get our test target, the innerCode() function:

Setting up middleware for tests

const next = jest.fn();
const dispatch = jest.fn();
jest.ftn();
apiMiddleware({ dispatch, getState })(next);

const getState

const middleware

We can now use the regular Jest tests to test the middleware() function we built by calling it with
action objects:

Simple middleware test call

it('should process action', () => {

const next = jest.fn();
const dispatch = jest.fn();
const getState = jest.fn();
const middleware = sampleMiddleware({ dispatch, getState })(next);

const sampleAction = { type: 'SAMPLE_ACTION' };

middleware(sampleAction);

11
12

0 = O O b W N =~

N S G
B W N, O

Chapter 6. Tests 100

// TODO: Add expects
});

In the case of our simple middleware, we only want to verify that it passed the action correctly down
the chain by calling next (action). Since we used Jest’s function mocking, we can get a full history
of calls to each mock by accessing next.mock.calls:

Verify correct calls to next

expect(next.mock.calls.length).toBe(1);
expect(next.mock.calls[0Q].length).toBe(1);
expect(next.mock.calls[@] [0]).toEqual(sampleAction);

Our test verified that there was only one call to next (). In that call there was only one parameter
passed, and that parameter was the sample action.

We could do all the three tests in one go by using:

Combine the test cases

expect(next.mock.calls).toEqual([[sampleAction]]);

Simplifying the Test Structure

To avoid having to duplicate the test setup code before every it() clause, we can use Jest’s
beforeFach() method to combine the setup in one place:

Generic setup

describe('sample middleware', () => {
let next, dispatch, getState, middleware;

beforeEach(() => {

next = jest.fn();

dispatch = jest.fn();

getState = jest.fn();

middleware = sampleMiddleware({ dispatch, getState })(next);
1)

it('should process action', () => {
const sampleAction = { type: 'SAMPLE_ACTION' };

middleware(sampleAction);

15
16
17
18

0 = O O b W N =~

N S G
B WD, O

15
16
17
18
19
20
21
22
23
24

Chapter 6. Tests 101

expect(next.mock.calls).toEqual ([[sampleAction]]);
};
}s

Using this structure, our middleware will be rebuilt before each test and all the mocked functions
will be reset, keeping the testing code itself as short as possible.

Testing Async Middleware

For a more complete example, let’s use an API middleware similar to the one discussed in the Server
Communication Chapter:

API middleware

import 'whatwg-fetch';
import { API } from 'consts';
import { apiStarted, apiFinished, apiError } from 'actions/ui';

const apiMiddleware = ({ dispatch }) => next => action => {
if (action.type !== API) {
return next(action);

const { url, success } = action.payload;

dispatch(apiStarted());

return fetch(url)
.then(response => response. json())
.then(response => {
dispatch(apiFinished());
dispatch(success(response));
)
.catch(({ status, statusText }) =>
dispatch(apiError(new Error({ status, statusText }))))

};

export default apiMiddleware;

Our middleware catches any actions of the type > API’, which must contain a payload key with a url
to make a request to and a success parameter that holds an action creator to call with the returned
data:

© 00 < O U b W N =

(RN
N~ O

Chapter 6. Tests 102

Sample API action

const setData = data => ({
type: 'SET_DATA',
payload: data

1);

const apiAction = () => ({
type: API,
payload: {
success: setData,
url: 'fake.json'
}
1)

In our Redux call, calling dispatch(apiAction()) will result in our API middleware doing a GET
request for server/fake. json and (if successful) dispatching the SET_DATA action with payload
set to the response. When there is an error, an action created by apiError() will be dispatched
containing status and statusText.

Another important feature of the API middleware is that it will dispatch apiStarted() before
contacting the server and apiFinished() on success (or apiError() on failure). This allows the
application to keep track of the number of active requests to the server and display a spinner or
some other user indication.

To fully test this middleware we can split the tests into three groups: general tests, success tests, and
failure tests.

Setup

To make our tests cleaner we will be using the structure discussed previously and mocking the
fetch() API as discussed in the “Async Action Creators” section of this chapter.

We will also use the sample API action creators from earlier to drive the tests and a fake data response
from the server:

0 N O O B~ W N -

B W W W W W W W W WwWwWNDNDDNDNDNDDNNDNDDNDNDNDDNDAES AP, 2 s
© © 00 9 O Ol b W N O © W 3O O b OO O 0 O O b W N~ O O

Chapter 6. Tests

Base of the API middleware tests

103

import apiMiddleware from 'middleware/api';
import { mockFetch, mockFetchError } from 'test-utils';
import { API_STARTED, API_FINISHED, API, API_ERROR } from 'consts';

const data = { title: 'hello' };

const setData = data => ({
type: 'SET_DATA',
payload: data

1)

const apiAction = () => ({
type: API,
payload: {
success: setData,
url: 'fake.json'
}
1)

describe("api middleware", () => {
let next, dispatch, middleware;

beforekach(() => {

next = Jjest.fn();
dispatch = jest.fn();
middleware = apiMiddleware({ dispatch })(next);

1

describe('general', () => {
// TODO

1)

describe('success', () => {
// TODO

1)

describe('error', () => {
// TODO

});
1)

0 N O O & W N =

, O © 0 N O O b W N =~

RN

Chapter 6. Tests 104

General tests

The first test for any middleware is to ensure that it passes unknown actions down the chain. If we
forget to use next(action), no actions will reach the reducers:

Verify unknown actions are handled correctly

it('should ignore non-API actions', () => {
const sampleAction = { type: 'SAMPLE_ACTION' };

middleware(sampleAction);
expect(dispatch.mock.calls.length).toBe(Q);

expect(next.mock.calls).toEqual([[sampleAction]]);

1)

Here we verify that dispatch() is never called and next() is called exactly once with our
sampleAction. Since we will be using dispatch.mock.calls and next.mock.calls very often in
our tests, we can shorten them a little by adding the following to our setup code:

Improve the setup code

let next, dispatch, middleware, dispatchCalls, nextCalls;
beforeEach(() => {

next = jest.fn();

dispatch = jest.fn();

dispatchCalls = dispatch.mock.calls;

nextCalls next.mock.calls;

middleware

});

apiMiddleware({ dispatch })(next);

Now instead of expect(next.mock.calls) we can use expect(nextCalls).

Another general test could be to verify that the API_STARTED action is dispatched every time the
middleware is about to access the server:

W N -

N O O B W N -

B W N -

Chapter 6. Tests 105

Test that API_STARTED is dispatched

it('should dispatch API_STARTED', () => {
middleware(apiAction());
expect(dispatchCalls[@]).toEqual([{ type: API_STARTED }]);
1)

Our expect() call only checks that the first dispatch() action is API_STARTED because the
middleware might call additional actions later on.

Successful server access

In the success scenario, we need to mock our fetch() API to return a successful response. We will
be using the same mockFetch() utility created in the “Async Action Creators” section of this chapter.
Our basic success tests need to check that API_FINISHED is dispatched once the API is done and that
our success() action creator is called, passed the response, and dispatched to the store:

Success tests framework

describe('success', () => {
beforeEach(() => mockFetch('recipes.json', 200, JSON.stringify(data)));

it('should dispatch API_FINISHED');

it('should dispatch SET_DATA');
});

A first attempt at testing the first case might look similar to the API_STARTED test:

Test that API_FINISHED is dispatched

it('should dispatch API_FINISHED', () => {
middleware(apiAction());
expect(dispatchCalls[2]).toEqual([{ type: API_FINISHED }]);

1)

Unfortunately, this code will not work. Since API_FINISHED is only dispatched after the fetch()
promise is resolved, we need to wait for that to happen before calling expect().

As discussed in the “Async Action Creators” section of this chapter, we rely on our call to the
middleware to return a promise that gets resolved once the fetch() call completes. Only then can
we run assertions and verify that everything behaved according to our expectations:

O O b W N -

Chapter 6. Tests 106

The correct API_FINISHED test

it('should dispatch API_FINISHED', () => {
return middleware(apiAction())
.then(() = {
expect(dispatchCalls[2]).toEqual([{ type: API_FINISHED }]);
1)
1);

In this version of the test, only once the promise returned by the call tomiddleware() is resolved do
we check the array of calls to dispatch(). Since our new test is a one-liner, we can use some ES2016
magic and Jest’s toMatchSnapshot () method to shorten the code:

Short API_FINISHED test

it('should dispatch API_FINISHED', () =>
middleware(apiAction()).then(() =>
expect(dispatchCalls[2]).toMatchSnapshot()));

Testing that the API middleware correctly sends the response from the server via the action creator
provided in action.payload.success is very similar:

Test that SET_DATA was dispatched

it('should dispatch SET_DATA', () =>
middleware(apiAction()).then(() =>
expect(dispatchCalls[1]).toEqual([setData(data)])));

After the fetch() method is done, we check that the third call to dispatch() sent us the same action
object as a direct call to the setData(data) action creator.

Remember that we mocked the server response for fetch() with mockFetch(), passing it
the stringified version of data.

Failed server access

The failing case is similar to the success one, except that we mock fetch() to fail. There are two tests
in this scenario, verifying that API_FINISHED was not dispatched and that API_ERROR was dispatched
instead:

Chapter 6. Tests 107

The failure case scenario tests

describe('error', () => {
beforeEach(() => mockFetchError('recipes. json', 404, 'Not found'));

it('should NOT dispatch API_FINISHED', () =>
middleware(apiAction()).then(() =>
expect(dispatchCalls[1][@].type).not.toBe(API_FINISHED)));

it('should dispatch error', () =>
middleware(apiAction()).then(() =>
expect(dispatchCalls([1]).toMatchSnapshot()));
1);

Here we have used all the methods discussed previously to test both cases.

Middleware Tests Summary

As our application grows, more complex and asynchronous code will be moved to middleware.
While this will cause the tests for the middleware to become complex, it will keep the complexity
from spreading to other parts of our Redux application.

The basic structure discussed here for the API middleware should be enough to cover most
implementations.

We have left mocking getState() as an exercise for the reader. It is suggested that you take the
sample project and modify the API middleware to read something from the state before the code
that performs the API request (e.g., get an access token), and that you correctly update the tests to
check that the store is accessed and correct values are used in the middleware.

Integration Tests

The role of the integration tests is to verify that all the parts of the application work correctly
together. A comprehensive unit test suite will ensure all the reducers, action creators, middleware,
and libraries are correct. With integration tests, we will try to run them together in a single test to
check system-wide behavior.

As an example of an integration test, we will verify that when the fetchRecipes() action creator
is dispatched, data is correctly fetched from the server and the state is updated. In this flow we will
check that the API middleware is correctly set up, all the required action creators are correct, and
the recipes reducer updates the state as needed.

N O O B~ W N -

0 N O O & W N~

S G
D W NN, O

15
16

Chapter 6. Tests 108

Basic Setup

Since the integration tests will be using the real store, we can simple require and initialize it as in
our regular application:

Integration test skeleton

import store from 'store';

describe('integration', () => {
it('should fetch recipes from server', () => {
// TODO
1)
1)

Basic Integration Test

Our test will include four steps:

1. Verify the initial state.

2. Mock the data returned from the server.

3. Dispatch the action created by fetchRecipes().

4. Verify that our state’s recipes key holds the data returned from the server.

The full test looks like this:

Full integration test

import store from 'store';
import { fetchRecipes } from 'actions/recipes';
import { mockFetch } from 'test-utils';

describe('integration', () => {
it('should fetch recipes from server', () => {
const data = [{ title: 'test' }];

expect(store.getState().recipes).toEqual([]);
mockFetch('recipes. json', 200, JSON.stringify(data));

return store.dispatch(fetchRecipes())
.then(() => expect(store.getState().recipes).toEqual(data));
1)
1)

Chapter 6. Tests 109

To make sure our reducer updates the state, we first verify that our initial recipes list is empty
and check that it was changed to contain the server-returned data after the fetchRecipes() action
completed.

Integration Tests Summary

As can be seen from this simple test, doing integration tests in Redux is usually fairly straight-
forward. Since everything is driven by actions, in most cases our integration tests will follow the
four steps outlined above: we verify the initial state of the system, mock any external dependencies,
dispatch an action, and verify that the state has changed and any external APIs were called as
expected.

Summary

In this chapter we have discussed in detail various methods of testing Redux using the Jest library.
Given the clear division of responsibilities in Redux and in keeping with its plain JavaScript objects
and idempotent functions, most unit tests (and integration tests) are short and simple to write.

This is in turn means that we, as developers, can minimize the time we spend writing tests and still
have a comprehensive and understandable testing suite.

This is the last chapter in the “Real World” part of this book. In the next part, “Advanced Redux,”
we will delve deeper into each of Redux’s actors and learn advanced methods for organizing and
managing our code.

Part 3. Advanced Concepts

© 00 N O U b W N =

Chapter 7. The Store

In contrast to most other Flux implementations, in Redux there is a single store that holds all
of the application state in one object. The store is also responsible for changing the state when
something happens in our application. In fact, we could say that Redux is the store. When we talk
about accessing the state, dispatching an action, or listening to state changes, it is the store that is
responsible for all of it.

0 Sometimes the concern is raised that storing the whole state in one huge JavaScript object
might be wasteful. But since objects are reference-type values and the state is just an object
holding a reference to other objects, it doesn’t have any memory implications; it is the same

as storing many objects in different variables.

Creating a Store

To create the store we use the createStore() factory function exported by Redux. It accepts three
arguments: a mandatory reducer function, an optional initial state, and an optional store enhancer.
We will cover store enhancers later in this chapter and start by creating a basic store with a dummy
reducer that ignores actions and simply returns the state as it is:

Sample store

import { createStore } from 'redux';

const initialState = {
recipes: [],
ingredients: []

}

const reducer = (state, action) => state;

const store = createStore(reducer, initialState);

0 The initialState parameter is optional, and usually we delegate the task of building an

initial state to reducers, as described in the Reducers Chapter. However, it is still useful

when you want to load the initial state from the server to speed up page load times. State
management is covered extensively in the State Management Chapter .

The simple store that we have just created has five methods that allow us to access, change, and
observe the state. Let’s examine each of them.

2

o I O O P+ W N =

Chapter 7. The Store 112

Accessing the State

The getState() method returns the reference to the current state:

Get current state from store

store.getState();
// => { recipes: [], ingredients: [] }

Changing the State

Redux does not allow external changes to the state. Using the state object received from getState()
and changing values directly is prohibited. The only way to cause a change of the state is by passing
actions to the reducer function. Actions sent to the store are passed to the reducer and the result is
used as the new global state.

Sending action objects to reducers is done via the store using the store’s dispatch() method, which
accepts a single argument, the action object:

Dispatch action to store

const action = { type: 'ADD_RECIPE', ... }
store.dispatch(action);

Now we can rewrite our reducer to make it able to create an updated state for actions of type
'ADD_RECIPE' and return the current state otherwise:

Sample reducer code

const reducer(state, action) => {
switch (action.type) {
case 'ADD_RECIPE':
return Object.assign(...);
default:
return state;
}
¥

Listening to Updates

Now that we know how the store updates the state, we need a way to update the UI or other parts
of our application when the state changes. The store allows us to subscribe to state changes using
the subscribe() method. It accepts a callback function, which will be executed after every action
has been dispatched:

O = W N =

W N -

Chapter 7. The Store 113

The subscribe method

const store = createStore((state) => state);
const onStoreChange = () => console.log(store.getState());

store.subscribe(onStoreChange);

The subscribed callback does not get passed any arguments, and we need to access the
state. So, we must call store.getState() ourselves.

The return value of the subscribe() method is a function that can be used to unsubscribe from the
store. It is important to remember to call unsubscribe() for all subscriptions to prevent memory
leaks:

Unsubscribing from store updates

const unsubscribe = store.subscribe(onStoreChange);

// When the subscription is no longer needed
unsubscribe();

Replacing the Reducer

When creating the Redux store, a reducer function (often referred to as the root reducer) is passed
as the first parameter to createStore(). During runtime we can use the store’s replaceReducer ()
method to replace this reducer function. Usually this method is used in development to allow hot
replacement of reducers. In complex applications it might be used to dynamically decorate or replace
the root reducer to allow code splitting.

o If your application is too large to bundle into a single file or if you want to gain extra
performance, you usually use a technique called code splitting—separating the production
bundle into multiple files and loading them on demand when the user performs some
interaction or takes a specific route. Implementing lazy loading is outside the scope of this
book, but you might want to know that code splitting also can be applied to the Redux

store, thanks to the replaceReducer () method.

Let’s look at a simple example with some functionality available only for authenticated users. At
initial load, our store will only handle the currentUser substate—just enough for the authentication:

O O b W N =~

Chapter 7. The Store 114

Basic reducer setup

import { combineReducers } from 'redux';
import { currentUser } from 'reducers/current-user';

const reducer = (state, action) => combineReducers({ currentUser });

const store = createStore(reducer);

If combineReducers () looks unfamiliar to you, take a look at Chapter 9 to learn about this technique.
For now, let’s just assume the functions inside are going to handle a currentUser substate. After the
user signs in, we load the new functionality. Now we need to make our store aware of the new subset
of our application state and the function that should handle it. Here is where the replaceReducer ()
method comes in handy:

Replacing the root reducer

const newReducer = (state, action) => combineReducers({ currentUser, recipes });

store.replaceReducer (newReducer);

Keep in mind that when you call replaceReducer(), Redux automatically calls the same initial
action it calls when you first create the store, so your new reducer automatically gets executed and
the new state is immediately available via the store.getState() method. For more on the initial
action, see Chapter 9.

The same technique can be used by development tools to implement the hot reloading mechanism
for a better developer experience. Hot reloading is a concept where source code changes don’t cause
a full page reload, but rather the affected code is swapped in place by special software and the
application as a whole is kept in the same state that it was in before the code change. Hot reloading
tools are outside the scope of this book, but you can easily find more information online.

Store as Observable

Starting from version 3.5.0, Redux store can also act as an Observable. This allows libraries like
RxJS to subscribe to the store’s state changes. This subscription method is different from the regular
subscribe() method of the store: when subscribing to the store as an observable, the latest state is
passed without the need to call store.getState().

To support older browsers, Redux uses the symbol-observable*® polyfill when Sym-
bol.observable is not natively supported.

*https://github.com/blesh/symbol-observable

https://github.com/blesh/symbol-observable
https://github.com/blesh/symbol-observable

O O b W N -

O© 00 9 O O b W N =~

Chapter 7. The Store 115

Integration with RxJS

import store from "store";

import { Observable } from "rxjs";
const store$ = Observable.from(store);

store$. forEach((state) => console.log(state))

This basic API is interoperable with most common reactive libraries (e.g. RxJS). Any library that
exports the next() method can be subscribed and receive updates. This implementation also
conforms to the tc39/proposal-observable®.

If you don’t use reactive libraries, you can still subscribe to the store by accessing the Sym-
bol.observable property (or using symbol-observable polyfill like Redux does):

Getting the Redux store observable

const observable = store[Symbol.observable]();

Subscribing with a generic observer will cause the observer’snext () be called on every state change
and be passed the current store state.

Subscribing to changes

const observer = {
next(state) {
console.log("State change", state);

}
};

const observable = store.$$observable();

const unsubscribe = observable.subscribe(observer);

To unsubscribe, we simply call the function returned from the call to subscribe()

*https://github.com/tc39/proposal-observable

https://github.com/tc39/proposal-observable
https://github.com/tc39/proposal-observable

D W N -

O© 00 9 O O b W N =

-
(]

Chapter 7. The Store 116

Unsubscribing from changes

const observable = store[Symbol.observable]();
const unsubscribe = observable.subscribe(observer);

unsubscribe();

Full Store API

The five methods of the store—getState(), dispatch(), subscribe(), replaceReducer(), and the
observable symbol—make up the whole of the store’s API and most of the API Redux exports. In
the first chapter of this book we learned how the first three are enough to build a fully functional
application. This low API footprint, coupled with strong versatility, is what makes Redux so
compelling and easy to understand.

Decorating the Store

The basic store functionality in Redux is very simple and sufficient for most use cases. Yet sometimes
it is useful to slightly change one of the methods, or even add new ones to support more advanced
use cases. This can be done by decorating the store. In previous versions of Redux (prior to 3.1.0)
higher-order functions were used to decorate the store, but because of complicated syntax, the
createStore() API has changed and it now supports an optional parameter for a store decorator.

Higher-Order Functions

Before we proceed, let’s do a quick overview of what higher-order functions are. We can define
the term as referring to a function that either takes one or more functions as arguments, returns a
function as its result, or does both. Here’s an example:

Sample higher-order function

function output(message) ({
console. log(message);

}

function addTimeStamp(fn) {
return function(...args) {
console.log(Executed at: ${Date.now()}");
fn(...args);

11
12
13
14
15
16
17

O = W N =

Chapter 7. The Store 117

const timedOutput = addTimeStamp(output);

timedOutput('Hello World!');

> Executed at: 1464900000001
> Hello World!

Here, the output() function prints our message to the console. The addTimeStamp() function is
a higher-order function that can take any other function and log the time of execution. Calling
addTimeStamp() with output() as the parameter creates a new “wrapped” function that has
enhanced functionality. It still has the signature of the original output() function but now also
prints the timestamp.

The compose() Function

The use of higher-order functions is very common in Redux applications, as it allows us to easily
extend the behavior of other parts of the code. Take a look at an imaginary example where we have
to wrap our original function in three wrappers:

Multiple decoration

const wrapped = third(second(first(originalFn)));

wrapped();

Using multiple decorators is a valid and practical approach, but the resulting code can be hard to
read and appear somewhat cumbersome. Instead, Redux provides the compose() function to handle
multiple wrappers in a cleaner manner:

Multiple wrappers with compose

import { compose } from 'redux';

const wrapped = compose(third, second, first)(originalFn);

wrapped();

The simplest implementation of that function is very neat. Notice the use of the reduceRight()
method on the array of functions, which ensures that wrapping of higher-order functions happens
from right to left:

[ENEN

[N

, O © 0 9 O O b W N =~

© © 00 N O O b W N =~

Chapter 7. The Store 118

Implementation of compose

function compose(...funcs) {
return (...args) => {
const last = funcs[funcs.length - 1]
const rest = funcs.slice(Q, -1)

return rest.reduceRight(
(composed, f) => f(composed),
last(...args)

Store Enhancers

Store enhancers are higher-order functions used to enhance the default behavior of the Redux store.
In contrast to middleware and reducers, they have access to all internal store methods (even those
not available to middleware, such as subscribe()).

To give a few examples, there are store enhancers for:

« Store synchronization (between browser tabs or even network clients)
« State persistence
« Integration with developer tools

Let’s build an example store enhancer that will persist state changes and load initial state from
localStorage. To enhance or decorate a store, we need to write a higher-order function that receives
the original store factory function as a parameter and returns a function similar in signature to
createStore():

Implementation of store enhancer

import { createStore } from 'redux';
import { rootReducer } from 'reducers/root';

const persistStore = () => (next) =>
(reducer, initialState, enhancer) => {
let store;

if (typeof initialState !== 'function') {
store = next(reducer, initialState, enhancer);
} else {

11
12
13
14
15
16
17
18
19
20
21
22
23

© © 00 I O O b W N =~

N

Chapter 7. The Store 119

const preloadedState = initialState ||
JSON.parse($localStorage.getItem('@@PersistedState') || {})

store = next(reducer, preloadedState, enhancer);

}

store.subscribe(() => $localStorage.setItem(
'@@PersistedState’,
JSON.stringify(store.getState())

));

return store;

We start by creating a store. We first check if an initialState was originally passed. If it was, we
create the store with it. Otherwise, we read the initial state from localStorage:

Check if initialState was provided

let store;

if (typeof initialState !== 'function') {
store = next(reducer, initialState, enhancer);
} else {
const preloadedState = initialState ||
JSON.parse($localStorage.getItem(' @@PersistedState') || {})

store = next(reducer, preloadedState, enhancer);

Right after our store is initiated, we subscribe to state updates and save the state to localStorage on
every change. This will ensure our state and the local storage are always in sync. Finally, we return
the decorated store:

O O b W N -

0w N O O B W N =

Chapter 7. The Store 120

Sync local storage with latest state

store.subscribe(() => $localStorage.setItem(
'@@PersistedState’,
JSON.stringify(store.getState())

));

return store;

This example doesn’t handle errors or edge cases, but it showcases the base of a store enhancer.

To simplify the syntax, Redux allows us to pass the store enhancer as a parameter to createStore():

Passing store enhancer as an argument

import { createStore } from 'redux';

const store = createStore(rootReducer, persistStore());

If you’ve been following along carefully, you may have noticed that in the sample code at the
beginning of the chapter the second parameter to the createStore() function was initialState.
Both parameters are optional, and Redux is smart enough to distinguish between the state object
and the store enhancer when you pass only two arguments. However, if you also need an initial
state, the parameters of createStore() should come in the following order:

Passing initial state before store enhancer

createStore(rootReducer, initialState, persistStore());

We can use multiple store enhancers to create the final store for our application, and the same
compose() method we saw earlier can be used for store composition as well:

Using compose to combine store enhancers

const storeEnhancers = compose(
// ...other decorators
decorateStore

)i
const store = createStore(rootReducer, storeEnhancers);

store.createdAt // -> timestamp

0 I O O b W N =

B R R s s
O O b W N~ O O

0w I O O b W N =

Chapter 7. The Store 121

applyMiddleware()

One of the best-known store enhancers is called applyMiddleware(). This is currently the only store
enhancer provided by Redux (if you aren’t familiar with middleware, head to Chapter 10 for an in-
depth explanation).

Implementation of applyMiddleware

export default function applyMiddleware(...middlewares) {
return (createStore) => (reducer, preloadedState, enhancer) => {
var store = createStore(reducer, preloadedState, enhancer)
var dispatch = store.dispatch
var chain = []

var middlewareAPI = {
getState: store.getState,
dispatch: (action) => dispatch(action)
}
chain = middlewares.map(middleware => middleware(middlewareAPI))
dispatch = compose(...chain)(store.dispatch)

return { ...store, dispatch }

0 In this example, the word middlewares is used as plural form to distinguish between
singular form in the ‘map’ function. It is the actual source code of applyMiddleware().

At its core, applyMiddleware() changes the store’s default dispatch() method to pass the action
through the chain of middleware provided:

Setup of store

var store = createStore(reducer, preloadedState, enhancer)
var dispatch = store.dispatch
var chain = []

var middlewareAPI = {
getState: store.getState,
dispatch: (action) => dispatch(action)

Chapter 7. The Store 122

First a store is created and the core getState() and dispatch() methods are wrapped into something
called middlewareAPI. This is the object our middleware receives as the first parameter (commonly
confused with store):

Building the middleware chain

chain = middlewares.map(middleware => middleware(middlewareAPI))

The array of middleware is transformed into the result of calling middleware() withmiddlewareAPI
as its argument. Since the structure of a middleware is api => next => action => {}, after the
transformation, chain holds an array of functions of type next => action => {}.

The last stage is to use the compose() function to decorate the middleware one after another:

Building the dispatch chain

dispatch = compose(...chain)(store.dispatch)

This line causes each middleware to decorate the chain of previous ones in a fashion similar to this:

Composing middleware without compose

middlewareA(middlewareB(middlewareC(store.dispatch)));

The original store.dispatch() is passed as a parameter to the first wrapper in the chain.

This implementation explains the strange syntax of the Redux middleware (the 3-function
structure):

1 const myMiddleware =
2 ({ getState, dispatch }) => (next) => (action) => { .. }

Other Uses

Store enhancers are powerful tools that allow us to debug stores, rehydrate state on application
load, persist state to localStorage on every action, sync stores across multiple tabs or even network
connections, add debugging features, and more. If you’d like an idea of what’s available, Mark
Erikson has composed a list of third-party store enhancers® in his awesome redux-ecosystem-links**
repository.

*https://github.com/markerikson/redux-ecosystem-links/blob/master/store.md
*thttps://github.com/markerikson/redux-ecosystem-links

https://github.com/markerikson/redux-ecosystem-links/blob/master/store.md
https://github.com/markerikson/redux-ecosystem-links
https://github.com/markerikson/redux-ecosystem-links/blob/master/store.md
https://github.com/markerikson/redux-ecosystem-links

Chapter 7. The Store 123

Summary

In this chapter we learned about the central, most important part of Redux, the store. It holds the
whole state of the application, receives actions, passes them to the reducer function to replace
the state, and notifies us on every change. Basically, you could say that Redux is the store
implementation.

We learned about higher-order functions, a very powerful functional programming concept that
gives us incredible power to enhance code without touching the source. We also covered uses for
store enhancers in Redux, and took a look at the most common store enhancer, applyMiddleware().
This function allows us to intercept and transform dispatched actions before they are propagated to
reducers, and we will take a deeper look at it in Chapter 10.

In the next chapter we will look at actions and action creators, the entities we dispatch to the store
to make changes to the application state.

Chapter 8. Actions and Action
Creators

Actions are the driving force of every dynamic application, as they are the medium by which all
changes are communicated within a Redux application. In a Redux application we have two sides:
the senders of actions and their receivers. The senders might be event handlers (like keypresses),
timeouts, network events, or middleware. The receivers are more limited; in the case of Redux they
are middleware and reducers.

A connection between a sender and a receiver is not necessarily one-to-one. A keypress might cause
a single action to be sent that will in turn cause both a middleware to send a message to the server
and a reducer to change the state, resulting in a pop-up appearing. This also holds true in the other
direction, where a single reducer might be listening to multiple actions. While in very simple Redux
applications there might be a reducer for each action and vice versa, in large applications this relation
breaks down, and we have multiple actions handled by a single reducer and multiple reducers and
middleware listening to a single action.

Since the side emitting the actions doesn’t know who might be listening to it, our actions have to
carry all the information needed for the receiving end to be able to understand how to respond.

The simplest way to hold information in JavaScript is to use a plain object, and that is exactly what
an action is:

Plain object-based Action

const action = { type: 'MARK_FAVORITE' };

Actions are plain objects containing one required property, the type. The type is a unique key
describing the action, and it is used by the receiving end to distinguish between actions.

0 The value of the type property can be anything, though it is considered good practice to
use strings to identify actions. While on first thought numbers or ES2016 symbols might
sound like a better solution, both have practical downsides: using numbers makes it hard

to debug an application and gives little benefit spacewise, whereas ES2016 symbols will

cause issues with server rendering and sending actions across the network to other clients.

In Redux, we send actions to the store, which passes them to middleware and then to reducers. In
order to notify a store about an action, we use the store’s dispatch() method.

Unlike many Flux implementations, in Redux the store’s dispatch() API is not globally available.
You have a few options to access it:

O = W N =

O O b W N~

Chapter 8. Actions and Action Creators 125

1. By holding a reference to the store
2. Inside middleware
3. Through methods provided by special libraries for different frameworks

Here’s a simple example for dispatching actions by holding a direct reference to the store:

Dispatching a simple action

import { store } from './lib/store’;

store.dispatch({ type: 'MARK_FAVORITE' });

Passing Parameters to Actions

While the type property in an action is enough for reducers and middleware to know what action
to process, in most cases more information will be required. For example, instead of sending the
INCREMENT_COUNTER action 10 times, we could send a single action and specify 10 as an additional
parameter. Since actions in Redux are nothing more than objects, we are free to add as many
properties as needed. The only limitation is that the type property is required by Redux:

Standard action object

store.dispatch({
type: 'MARK_FAVORITE',
recipeld: 21

1)

The object passed to dispatch() will be available to our reducers:

Accessing actions in reducers

function reducer(state, action) {
console.log(action);
return state;

// -> { type: 'MARK_FAVORITE', recipeld: 21, ... }

To keep our actions consistent across a large code base, it is a good idea to define a clear scheme for
how the action objects should be structured. We will discuss the scheme later in this chapter.

Action Creators

As our applications grow and develop, we will start encountering more and more code like this:

O = W N -

O = W N =

Chapter 8. Actions and Action Creators 126

Direct object dispatch
dispatch({
type: 'ADD_RECIPE',
title: title.trim(),
description: description ? description.trim() :

1)

If we decide to use the same action in other places, we will end up duplicating the logic in multiple
locations. Such code is hard to maintain, as we will have to synchronize all the changes between all
the occurrences of the action.

A better approach is to keep the code in one place. We can create a function that will create the
action object for us:

Function to create an action object

const addRecipe = (title, description = '') => ({
type: 'ADD_RECIPE',
title: title.trim(),
description:description.trim()

1)

Now we can use it in our code:

Using an action creator

dispatch(addRecipe(title, description);

Any modification to the content or logic of the action can now be handled in one place: the action
creation function, also known as the action creator.

Beyond improving the maintainability of our applications, moving the action object creation to a
function allows us to write simpler tests. We can test the logic separately from the place from which
the function is called.

In a large project, most—if not all—of our actions will have a corresponding action creator function.
We will try to never call the dispatch() method by handcrafting the appropriate action object,
but rather use an action creator. This might appear to be a lot of overhead initially, but its value
will become apparent as the project grows. Also, to help reduce boilerplate, there are a number of
libraries and concepts that ease the creation and use of action creators. Those will be discussed later
in this chapter.

Directory Organization

In order to better manage our action creators, we will create a separate directory for them in our
code base. For smaller projects, it may be enough to group actions in files according to their usage
in reducers:

D W N -

O© 00 9 O O b W N =

Chapter 8. Actions and Action Creators 127

Simple directory structure

actions/
recipes.js // Recipe manipulation actions
auth. js // User actions (login, logout, etc.)

But as our projects grow in both size and complexity, we will subdivide our action creator directory
structure even more. The common approach is to nest actions based on the data type they modify:

Advanced directory structure

actions/
recipes/
favorites.js // Handle favorite recipe logic
auth/
resetting-password. js // Handle password logic
permissions. js // Some actions for permissions

o At first glance it might look easier to put action creators with their corresponding reducers,

sometimes even in the same files. While this approach might work perfectly in the

beginning, it will start breaking down in large projects. As the complexity grows, the

application might have multiple reducers acting on the same action or multiple actions

watched by a single reducer. In these cases the grouping stops working, and the developer is

forced to start decoupling some of the actions or moving them, ending up with the structure
suggested here.

Flux Standard Actions

As projects and teams grow in size, it is important to create a convention on the structure of action
objects. To this end, the open-source community has come together to create the Flux Standard
Action® (FSA) specification. The goal is to have consistency across both a project and third-party
libraries.

The FSA spec defines the structure of actions and a number of optional and required properties. At
its base, an action should have up to four fields:

*2https://github.com/acdlite/flux-standard-action

https://github.com/acdlite/flux-standard-action
https://github.com/acdlite/flux-standard-action
https://github.com/acdlite/flux-standard-action

O O b W N -

< O O b W N =

Chapter 8. Actions and Action Creators 128

FSA object sample

const action = {
type,
error,
payload,
meta

};

FEach field has a distinct role:

« type is the regular Redux action identifier.

+ The error property is a Boolean that indicates whether the action is in an error state. The
rationale behind this is that instead of having multiple actions, like 'ADD_RECIPE_SUCCESS'
and 'ADD_RECIPE_ERROR', we can have only one action, 'ADD_RECIPE ', and use the error flag
to determine the status.

+ payload is an object holding all the information needed by the reducers. In our example, the
title and description would both be passed as the payload property of the action.

+ The meta property holds additional metadata about the action that is not necessarily needed
by the reducers, but could be consumed by middleware. We will go into detail on how the
meta property could be used in the Middleware Chapter.

Implemented as an FSA, our action looks like this:

FSA action example

store.dispatch({
type: 'ADD_RECIPE',
payload: {
title: 'Omelette’,
description: 'Fast and simple'’
}
15

If the action were in the error state (for example, in the event of a rejected promise or API failure),
the payload would hold the error itself, be it an Error () object or any other value defining the error:

O = W N =

Chapter 8. Actions and Action Creators 129

FSA action in error state

const action = {
type: 'ADD_RECIPE',
error: true,
payload: new Error('Could not add recipe because..."')

};

String Constants

In Chapter 2 we briefly discussed the idea of using string constants. To better illustrate the reasoning
behind this approach, let’s consider the problems that using strings for type can cause in a large code
base:

1. Spelling mistakes—If we spell the same string incorrectly in the action or the reducer, our
action will fire but result in no changes to the state. Worst of all, this will be a silent failure
without any message to indicate why our action failed to produce its desired effect.

2. Duplicates—Another developer, in a different part of the code base, might use the same string
for an action. This will result in issues that are very hard to debug, as our action will suddenly
cause that developer’s reducers to fire as well, creating unexpected changes to the state.

To avoid these issues, we need to ensure a unique naming convention for our actions to allow both
action creators and reducers to use the exact same keys. Since JavaScript doesn’t have native enum
structures, we use shared constants to achieve this goal. All the keys used for type are stored in a
single constants file and imported by both action creators and reducers. Using a single file allows
us to rely on JavaScript itself to catch duplication errors. The file will have this form:

constants/action-types.js

export const MARK_FAVORITE
export const ADD_RECIPE

'MARK_FAVORITE " ;
"ADD_RECIPE";

In large applications the naming convention will be more complicated to allow developers more
freedom to create constants for different parts of the application. Even in our simple example, being
able to mark both recipes and comments as favorites will require two different MARK_FAVORITE
actions (e.g., RECIPE__MARK_FAVORITE and COMMENT__MARK_FAVORITE):

S © W I O O b W N =

[N

© 00 I O O b W N -~

Chapter 8. Actions and Action Creators

constants/action-types.js

130

// Recipes

export const
export const
export const

// Comments

export const
export const
export const

ADD_RECIPE
DELETE_RECIPE
RECIPE__MARK_FAVORITE

ADD_COMMENT
DELETE_COMMENT
COMMENT_MARK_FAVORITE

"ADD_RECIPE";
'DELETE_RECIPE';
'RECIPE__MARK_FAVORITE";

"ADD_COMMENT " ;
'DELETE_COMMENT ' ;
'"COMMENT_MARK_FAVORITE";

Full Action Creators and React Example

Here’s the full example code for using action creators:

constants/action-types.js

export const MARK_FAVORITE = 'MARK_FAVORITE';

actions/places.js

import { MARK_FAVORITE } from 'constants/action-types';

const markFavorite = (recipeld) => ({
type: MARK_FAVORITE,

recipeld,
timestamp:

1)

Date.now()

export markFavorite;

0 N O O B~ W N -

B s s
D W NN, O

W N O O & W N =

N S U
B W NSO O

Chapter 8. Actions and Action Creators 131

components/recipe.js

import React from 'react’;
import { connect } from 'react-redux';
import { markFavorite } from 'actions/recipes';

const Recipe = ({ recipe, dispatch }) => (

<h3>{ recipe.title }</h3»
<button onClick={ () => dispatch(markFavorite(recipe.id)) }>
{ recipe.favorite ? 'Unlike' : 'Like' }
</button>
</1i>
),

export default connect()(Recipe);

Testing Action Creators

Since action creators are nothing more than plain JavaScript functions that should require nothing
but constants and do not rely on state, they are very easy to test. Given the same input, they will
always return the same output (unlike, for example, functions that read the local storage or other
state data that might change). Action creators also never modify any state directly, but rather only
return a new object. Thus, our tests can simply pass input values to action creators and verify that
the correct object is returned for each case:

Sample test code

import { ADD_RECIPE } from 'constants/action-types';
import { addRecipe } from 'actions/recipes';

describe('Recipes Actions', () => {
it ('addRecipe', () => {

const title = 'Omelette’;

const description = 'Fast and simple';

const expectedAction = {
type: ADD_RECIPE,
title,
description

};

expect(addRecipe(title, description)).to.equal(expectedAction);

15
16
17
18
19
20
21
22
23
24
25
26
27

Chapter 8. Actions and Action Creators 132

});

it ('should set timestamp to now if not given',6 () => {
const description = 'Fast and simple';
const expectedAction = {
type: ADD_RECIPE,
title: 'Untitled',
description

b

expect(addRecipe(null, description)).to.equal(expectedAction);
1)
1)

More complex action creators might use helper functions to build the action object. A simple example
might be a helper function trimTitle() that removes whitespace from around a string and is used
by a SET_TITLE action. We would test the method separately from the action creator function itself,
only verifying that the action creator called that method and passed it the needed parameters.

redux-thunk

The real power of actions comes with the use of various middleware (discussed more in the
Middleware Chapter). One of the most common and useful ones for learning Redux is redux-thunk?*.
In contrast to what we learned before, actions passed to dispatch() don’t have to be objects, as the
only part of Redux that requires actions to be objects is the reducers. Since the middleware get called
before an action is passed to the reducers, they can take any type of input and convert it into an
object.

This is exactly what redux-thunk does. When it notices that the action is of type “function” instead
of “object,” it calls the function, passing it the dispatch() and getState() functions as parameters,
and passes on the return value of this function as the action to perform. That is, it replaces the
function with its return value, which should be the plain JavaScript object the reducers expect.

This approach makes our action creators much more powerful, since they now have access to the
current state via getState() and can submit more actions via dispatch().

Adding redux-thunk to a project takes two steps:

1. Add the middleware to your project by running npm install --save redux-thunk.
2. Load the middleware by adding it to the store using the applyMiddleware() function:

*https://github.com/gaearon/redux-thunk

https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk

S © W I O O b W N =

[N

0 N O O & W N -

[G
O b WO N =~ O ©

Chapter 8. Actions and Action Creators

store/store.js

133

import { createStore, applyMiddleware } from 'redux';

import thunk from 'redux-thunk';
import rootReducer from 'reducers/index';

const store = createStore(
rootReducer,
applyMiddleware(thunk)
);

export default store;

0 This is generic code for adding middleware to your project. We will cover this in more

detail in the Middleware Chapter.

With redux-thunk installed, we can start writing action creators that return functions instead of
objects. Going back to our previous example, let’s create an action creator that simulates server

communication by using a delay:

Sample action

import { trimmedTitle } from 'utils/strings';

import { ADD_RECIPE_STARTED } from 'actions/recipes';

function addRecipe(title) {
return function (dispatch, getState) {
const trimmedTitle = trimTitle(title);
dispatch({ type: ADD_RECIPE_STARTED });

setTimeout(

() => dispatch({ type: ADD_RECIPE, title: trimmedTitle }),

1000
);

The main difference from our previous creators is that we are no longer returning an object but

rather a function:

O b W N -

D W N -

Chapter 8. Actions and Action Creators 134

Sample action

function addRecipe(title) ({
return function(dispatch, getState) {

// Action creator's code

};

Or, if we used the ES2016 arrow function style:

Sample action using ES2016 style

const addRecipe = (title) => (dispatch, getState) => {
// Action creator's code

};

First, we use a helper function to remove unneeded whitespace from our titles:

Using helpers in action creators

const trimmedTitle = trimTitle(title);

Next, we dispatch an action that might show a spinner in our application by setting a fetching flag
somewhere in our state:

Dispatch on load
dispatch({ type: ADD_RECIPE_STARTED });

The last step is to send the ADD_RECIPE action, but delayed by one second:

Set timeout to add recipe after a delay

setTimeout(
() => dispatch({ type: ADD_RECIPE, title: trimmedTitle }),
1000

);

In this example one action creator ended up dispatching two different actions. This gives us a new
tool, allowing us to generate as many granular actions as needed and even to dispatch no actions at
all in certain conditions.

Server Communication

The redux-thunk method can be used to allow simple server communications, simply by replacing
the setTimeout() call from the previous example with an Ajax call to the server:

0 N O O B~ W N -

N N B S s s s
, O O 0 J O O b W N~ O O

Chapter 8. Actions and Action Creators 135

An action that goes to the server

import * as consts from 'constants/action-types';

function checkStatus(response) {
if (response.status >= 200 && response.status < 300) {
return response;

throw (new Error(response.statusText));

const getRecipes = (limit = 100) => (dispatch) => {
dispatch({ type: consts.FETCH_RECIPES_START, limit });

fetch(recipes?limit=${ limit })
.then(checkStatus)
.then(response => response. json())
.then(data => dispatch({type: consts.FETCH_RECIPES_DONE, data}))
.catch(error => dispatch({type: consts.FETCH_RECIPES_ERROR, error}));

b

export getRecipes;

This code might be good for a very simple project, but it includes a lot of boilerplate that will be
needed for each API call we make. In the Middleware Chapter we will discuss a more generic and
cleaner approach to server communication.

Using State

Another feature we gain by using redux-thunk is access to the state when processing the action. This
allows us to dispatch or suppress actions according to the current application state. For example, we
can prevent actions from trying to add recipes with duplicate titles:

Chapter 8. Actions and Action Creators 136

An action that accesses state

const addRecipe = (title) => (dispatch, getState) => {
const trimmedTitle = trimTitle(title);

// We don't allow duplicate titles
if (getState().recipes.find(place => place.title == trimmedTitle)) {
return; // No action is performed

dispatch({
type: ADD_RECIPE,
payload: { title: trimmedTitle }
1)
b

Two new concepts can be seen in this code. We used getState() to get access to the full application
state and used a return statement that made our action creator emit no action at all:

An action that accesses state

if (getState().recipes.find(place => place.title == trimmedTitle)) {
return; // No action is performed

It is important to consider where such checks are performed. While multiple actions might dispatch
recipe-related manipulations, we might think it is best to do the check on the reducer level (as it
is the one modifying the state). Unfortunately, there is no way for the reducer to communicate the
problem back to us, and while it can prevent an action from adding duplicate titles to the list, it can’t
dispatch a message out. The only thing a reducer can do in this case is add the error directly to the
state tree.

While this approach might work, it adds complications to the reducer and causes it to be aware of
multiple parts of the state tree—in our example, not just recipes but also the notifications area—
which will make it harder to test and break down to multiple reducers. Thus, it is better to have the
validation logic in actions or middleware.

Testing

Testing redux-thunk-based actions is usually more complicated than testing regular actions, as it
may require the use of mocks and spies. As such, it is recommended to keep the actions as simple
as possible and break them into multiple functions and helpers to ease testing and understanding.

Let’s create a sample redux-thunk-based action:

0 I O O b W N =

O 00 9 O O b W N =~

NN
= o

Chapter 8. Actions and Action Creators 137

Sample redux-thunk action

export const myAction = () => (dispatch, getState) => {
const payload = getState();

dispatch({
type: 'MY_ACTION',
payload
1)
1

Our action will use the dispatch() method to send an action of type 'MY_ACTION' and use the whole
application’s state, obtained via getState(), as a payload.

Unlike with regular actions, we can’t just compare the return value and verify it’s a valid object.
Instead, we will need to rely on a new feature, createSpy(). jasmine.createSpy() creates a special
function that records any calls made to it by our application. This allows our test to check if the
function was called, and if so how many times and with what parameters:

Sample test for redux-thunk action

describe(actions, () => {
it('MY_ACTION', () => {
const getState = () => 'DATA';
const dispatch = jasmine.createSpy();
const expectedAction = { type: 'MY_ACTION', payload: getState() };

myAction()(dispatch, getState);

expect(dispatch).toHaveBeenCalledWith(expectedAction);
b
1);

In this example we pass the action creator myAction() two mocked functions: a getState() function
that returns a const value and a mocked dispatch(). Thus, after calling the action creator, we can
verify that the dispatch() function was called correctly and a valid action was passed.

redux-actions

When you start writing a large number of actions, you will notice that most of the code looks the
same and feels like a lot of boilerplate. There are multiple third-party libraries to make the process

O O B W N~

0 N O O & W N =~

Chapter 8. Actions and Action Creators 138

easier and cleaner. The redux-actions® library is one of the recommended ones, as it is both simple
and FSA-compliant. The library allows us to easily create new actions using the newly provided
createAction() function. For example:

actions/recipes.js

import { createAction } from 'redux-actions';
import { ADD_RECIPE } from 'constants/action-types';

const addRecipePayload = (title) => ({ title });

export const addRecipe = createAction(ADD_RECIPE, addRecipePayload);

This code generates an action creator that will return an FSA-compliant action. The generated action
creator will have functionality similar to this function:

Generated action creator

function addRecipe(title) {
return {
type: ADD_RECIPE,
payload: {
title

If the title is our only payload, we could simplify the call by omitting the second argument:

Simpler action creator

export const addRecipe = createAction(ADD_RECIPE);

The resulting action creator would be as follows:

**https://github.com/acdlite/redux-actions

https://github.com/acdlite/redux-actions
https://github.com/acdlite/redux-actions

0 I O O b W N =

O = W N =

© © 00 N O O b W N =~

[N

Chapter 8. Actions and Action Creators 139

Simpler action creator’s result

function addRecipe(title) {
return {
type: ADD_RECIPE,
payload: {
title

We could also pass metadata to the FSA action. For that, we could include a metadata object as a
third argument:

Passing metadata

export const addRecipe = createAction(
ADD_RECIPE,
(title) => ({ title }),
{ silent: true }

)

Or, instead of a metadata object, we could use a function to calculate the metadata based on the
parameters we pass in the payload:

Dynamic metadata

const addRecipeMetadata = (title) => ({
silent: true,
notifyAdmin: title === 'Omelette’

1)

export const addRecipe = createAction(
ADD_RECIPE,
(title) => ({ title }),
addRecipeMetadata

)i

The usage of the action creator is the same as before. We simply call it with the desired parameters:

0 N O O B~ W N -

B s s
D W NN, O

, O O 0 N O O b W N -~

NN

Chapter 8. Actions and Action Creators 140

Resulting object with dynamic metadata

dispatch(addRecipe('Belgian Waffles'));

// The dispatched object:
{
type: 'ADD_RECIPE',
error: false,
payload: {
title: 'Belgian Waffles'
},
meta: {
silent: true,
notifyAdmin: false

Errors

The action creator will automatically handle errors for us if passed an Error object. It will generate
an object with error = true and the payload set to the Error object:

Dispatching errors

const error = new Error('Server responded with 500');

dispatch(addRecipe(error));

// The dispatched object:
{
type: 'ADD_RECIPE',
error: true,
payload: Error(...),
meta: { ... }

createAction() Example

Here’s a full example of using createAction():

0 I O O b W N =

N B 1 1 | s s |l
© ©W 0O 1 O O b W N~ O O

Chapter 8. Actions and Action Creators 141

Dispatching errors

const addRecipe = createAction(
ADD_RECIPE,
(title, description) => (...args),
{ silent: true }

)

const addRecipeAsync = (title, description = '') => {
const details = { ...args };

return (dispatch) => {
fetch('/recipes', {
method: 'post',
body: JSON.stringify(details)
)
.then(
response => dispatch(addRecipe(details)),
error => dispatch(addRecipe(new Error(error)))
)i
}
};

In this example, we use the fetch promise to determine whether to create a successful action or an
error one:

Passing the promise directly to the action creator

response => dispatch(addRecipe(details)),
error => dispatch(addRecipe(new Error(error)))

Using redux-actions with redux-promise

redux-actions can be used in conjunction with redux-promise® to simplify the code even more.

The redux-promise library can automatically dispatch FSA-compliant actions and set the error and
payload fields for us. It adds the ability to dispatch() a promise (not just an object or function) and
knows how to automatically handle the resolve and reject functionality of promises:

*https://github.com/acdlite/redux-promise

https://github.com/acdlite/redux-promise
https://github.com/acdlite/redux-promise

© 00 < O U b W N =

[EEY
= o

Chapter 8. Actions and Action Creators

Automatically handling promises

142

const addRecipe = createAction(ADD_RECIPE);

export function addRecipeAsync(details) {
return () => addRecipe(
fetch('/recipes', {
method: 'post',
body: JSON.stringify(details)
)

.then(response => response. json())

)

The magic part here is that we pass a promise to addRecipe() that will take care of creating the

appropriate FSA-compliant action depending on whether the promise is resolved or rejected:

Passing a promise to an action creator

return () => addRecipe(
fetch('/recipes', {

Our only use of then() is to convert the data we get from fetch() into JSON:

Adding another stage to promise resolution

.then(response => response. json())

This line doesn’t return data, but only modifies the promise that we return from the action creator

and that the caller will send to dispatch().

Summary

In this chapter we covered action creators, the fuel running our application’s engine. We saw
that Redux is all about simplicity—actions are plain objects and action creators are just functions

returning plain objects.

We also saw how we can benefit from ES2016 by dramatically simplifying our syntax.

In the next chapter we will look at reducers, the components of our Redux application that respond

to actions.

© 00 = O U b W N =

[N
(]

Chapter 9. Reducers

The word reducer is commonly associated in computer science with a function that takes an array
or object and converts it to a simpler structure—for example, summing all the items in an array. In
Redux, the role of the reducer is somewhat different: reducers create a new state out of the old one,
based on an action.

In essence, a reducer is a simple JavaScript function that receives two parameters (two objects) and
returns an object (a modified copy of the first argument):

A simple reducer example

const sum = (result, next) => result + next;

[1,2,3].reduce(sum); // -> 6

Reducers in Redux are pure functions, meaning they don’t have any side effects such as changing
local storage, contacting the server, or saving any data in variables. A typical reducer looks like this:

Basic reducer

function reducer(state, action) {
switch (action.type) {

case 'ADD_RECIPE':

// Create new state with a recipe

default:
return state;

Reducers in Practice

In Redux, reducers are the final stage in the unidirectional data flow. After an action is dispatched
to the store and has passed through all the middleware, reducers receive it together with the current
state of the application. Then they create a new state that has been modified according to the action
and return it to the store.

O© 00 9 O O b W N =

N
(]

Chapter 9. Reducers 144

The way we connect the store and the reducers is via the createStore() method, which can receive
three parameters: a reducer, an optional initial state, and an optional store enhancer (covered in
detail in the Store and Store Enhancers Chapter.

As an example, we will use the application built in Chapter 2—a simple Recipe Book application.

Our state contains three substates:

« Recipes — A list of recipes
« Ingredients — A list of ingredients and amounts used in each recipe
« Ul - An object containing the state of various Ul elements

We support a number of actions, like ADD_RECIPE, FETCH_RECIPES, and SET_RECIPES.

The simplest approach to build a reducer would be to use a large switch statement that knows how
to handle all the actions our application supports. But it is quite clear that this approach will break
down fast as our application (and the number of actions) grows.

Using a switch statement to build a reducer

switch (action.type) {

case ‘ADD_RECIPE’ :

/* handle add recipe action */

case ‘FETCH_RECIPES’ :
/* handle fetch recipes action */

Reducer Separation

The obvious solution would be to find a way to split the reducer code into multiple chunks. The
way Redux handles this is by creating multiple reducers. The reducer passed as a first argument to
createStore() is a plain function, and we can extract code out of it to put in other functions.

Splitting and writing reducers becomes a much easier job if we correctly build the structure of the
state in our store. Given our example of the Recipe Book, we can see that we can create a reducer
for each of the substates. What’s more, each of the reducers only needs to know about its part of the
state, and they have no dependency on each other. For example, the recipes reducer only handles
recipe management, like adding and removing recipes, and doesn’t care about how ingredients or
the UI states are managed.

©O© 00 N O O & W N © 00 9 O O b W N

© 00 39 O O b W N =~

Chapter 9. Reducers 145

Following this separation of concerns, we can put each reducer into a different file and have a single
root reducer manage all of them. Another side effect of this approach is that the root reducer will
pass each of its children only the part of the state that it cares about (e.g., the ingredients reducer
will only get the ingredients substate of the store). This ensures the individual reducers can’t “break
out” out of their encapsulation.

Recipes reducer

const initialState = [];

export default function recipesReducer(recipes = initialState, action) {
switch (action.type) {
case ADD_RECIPE:
return [...recipes, action.payload];

Ingredients reducer

const initialState = [];

export default function ingredientsReducer(ingredients = initialState, action) {
switch (action.type) {
case ADD_INGREDIENT:
return [...ingredients, action.payload];

Root reducer

import recipesReducer from 'reducers/recipes’;
import ingredientsReducer from 'reducers/ingredients’';

const rootReducer = (state = {}, action) => Object.assign({}, state, {
recipes: recipesReducer(state.recipes, action),
ingredients: ingredientsReducer(state.ingredients, action)

1)

export default rootReducer;

© © 0 I O O b W N

Y

<N O O B W N =

Chapter 9. Reducers 146

This approach results in smaller, cleaner, more testable reducers. Each of the reducers receives a
subset of the whole state tree and is responsible only for that, without even being aware of the other
parts of the state. As the project and the complexity of the state grows, more nested reducers appear,
each responsible for a smaller subset of the state tree.

Combining Reducers

This technique of reducer combination is so convenient and broadly used that Redux provides a very
useful function named combineReducers() to facilitate it. This helper function does exactly what
rootReducer () did in our previous example, with some additions and validations:

Root reducer using combineReducers()

import { combineReducers } from 'redux';
import recipesReducer from 'reducers/recipes’;
import ingredientsReducer from 'reducers/ingredients’;

const rootReducer = combineReducers({
recipes: recipesReducer,
ingredients: ingredientsReducer

});

export const store = createStore(rootReducer);

We can make this code even simpler by using ES2016’s property shorthand feature:

Using ES2016 syntax in combineReducers()

import { combineReducers } from 'redux';
import recipes from 'reducers/recipes’';
import ingredients from 'reducers/ingredients';

const rootReducer = combineReducers({ recipes, ingredients });

export const store = createStore(rootReducer);

In this example we provided combineReducers() with a configuration object holding two keys
named recipes and ingredients. The ES2016 syntax we used automatically assigned the value
of each key to be the corresponding reducer.

It is important to note that combineReducers() is not limited to the root reducer only. As our state
grows in size and depth, nested reducers will be combining other reducers for substate calculations.
Using nested combineReducers() calls and other combination methods is a common practice in
larger projects.

Chapter 9. Reducers 147

Default Values

One of the requirements of combineReducers() is for each reducer to define the default value for
its substate. Both our recipes and ingredients reducers defined the initial state for their subtrees as
an empty object. Using this approach, the structure of the state tree as a whole is not defined in a
single place but rather built up by the reducers. This guarantees that changes to the tree require us
only to change the applicable reducers and do not affect the rest of the tree.

This is possible because when the store is created, Redux dispatches a special action called
@@redux/INIT. Each reducer receives that action together with the undefined initial state, which
gets replaced with the default parameter defined inside the reducer. Since our switch statements do
not process this special action type and simpy return the state (previously assigned by the default
parameter), the initial state of the store is automatically populated by the reducers.

Tree Mirroring

This brings us to an important conclusion: that we want to structure our reducers tree to mimic
the application state tree. As a rule of thumb, we will want to have a reducer for each leaf of the
tree. It would also be handy to mimic the folder structure in the reducers directory, as it will be
self-depicting of how the state tree is structured.

As complicated manipulations might be required to add some parts of the tree, some reducers
might not fall into this pattern. We might find ourselves having two or more reducers process
the same subtree (sequentially), or a single reducer operating on multiple branches (if it needs to
update structures at two different branches). This might cause complications in the structure and
composition of our application. Such issues can usually be avoided by normalizing the tree, splitting
a single action into multiple ones, and other Redux tricks.

Alternative to switch Statements

After a while, it becomes apparent that most reducers are just switch statements over action.type.
Since the switch syntax can be hard to read and prone to errors, there are a few libraries that try to
make writing reducers easier and cleaner.

0 While it is most common for a reducer to examine the type property of the action to
determine if it should act, in some cases other parts of the action’s object are used. For
example, you might want to show an error notification on every action that has an error

in the payload.

A common library is redux-create-reducer®, which builds a reducer from a configuration object
that defines how to respond to different actions:

3https://github.com/kolodny/redux-create-reducer

https://github.com/kolodny/redux-create-reducer
https://github.com/kolodny/redux-create-reducer

0 N O O B~ W N -

N B 1 sl |l
© ©W 0 1 O O b W N~ O O

O O 0 N O O b W N -~

RGN

Chapter 9. Reducers 148

Reducer using redux-create-reducer

import { createReducer } from 'redux-create-reducer';

const initialState = [];
const recipesReducer = createReducer(initialState, {

[ADD_RECIPE] (recipes, action) {
return [...recipes, action.payload];

3

[REMOVE_RECIPE] (recipes, action) {
const index = recipes.indexOf(action.payload);

return |
...recipes.slice(Q, index),
...recipes.slice(index + 1)
1
}
1)

export default recipesReducer;

Removing the case and default statements can make the code easier to read, especially when
combined with the ES2016 property shorthand syntax. The implementation is trivial:

Reducer using redux-create-reducer with ES2016 syntax

function createReducer(initialState, handlers) {
return function reducer(state, action) {
if (state === undefined) state = initialState;

if (handlers.hasOwnProperty(action.type)) {
return handlers[action.type](state, action);
} else {
return state;

b
};

If you are using the redux-actions library described in the previous chapter, you can also use
the handleActions() utility function from that library. It behaves basically the same way as
createReducer (), with one distinction—initialState is passed as a second argument:

© 00 < O U b W N =

B S s s sy
O 00 3 O O b W N~ O

Chapter 9. Reducers 149

Using redux-actions instead of createReducer()

import { handleActions } from 'redux-actions';
const initialState = [];

const recipesReducer = handleActions({
[ADD_RECIPE] (recipes, action) {
return [...recipes, action.payload];

3

[REMOVE_RECIPE] (recipes, action) {
const index = recipes.indexOf(action.payload);
return |
...recipes.slice(@, index),
...recipes.slice(index + 1)
1;
}
}, initialState);

export default recipesReducer;

If you are using Immutable.js, you might also want to take a look at the redux-immutablejs®” library,
which provides you with createReducer() and combineReducers() functions that are aware of
Immutable.js features like getters and setters.

Avoiding Mutations

The most important thing about reducers in Redux is that they should never mutate the existing
state. There are a number of functions in JavaScript that can help when working with immutable
objects.

Why Do We Need to Avoid Mutations?

One of the reasons behind the immutability requirement for the reducers is due to change detection
requirements. After the store passes the current state and action to the root reducer, it and the various
UI components of the application need a way to determine what changes, if any, have happened to
the global state. For small objects, a deep compare or other similar methods might suffice. But if the
state is large and only a small part may have changed due to an action, we need a faster and better
method.

*"https://github.com/indexiatech/redux-immutablejs

https://github.com/indexiatech/redux-immutablejs
https://github.com/indexiatech/redux-immutablejs

Chapter 9. Reducers 150

There are a number of ways to detect a change made to a tree, each with its pros and cons. Among
the many solutions, one is to mark where changes were made in the tree. We can use simple methods
like setting a dirty flag, use more complicated approaches like adding a version to each node, or
(the preferred Redux way) use reference comparison.

0 If you are unsure of how references work, jump ahead to the next two chapters and come
back to this one after.

Redux and its accompanying libraries rely on reference comparison. After the root reducer has run,
we should be able to compare the state at each level of the state tree with the same level on the
previous tree to determine if it has changed. But instead of comparing each key and value, we can
compare only the reference or the pointer to the structure.

In Redux, each changed node or leaf is replaced by a new copy of itself that has the changed data.
Since the node’s parent still points to the old copy of the node, we need to create a copy of it as
well, with the new copy pointing to the new child. This process continues with each parent being
recreated until we reach the root of the tree. This means that a change to a leaf must cause its parent,
the parent’s parent, etc. to be modified—i.e., it causes new objects to be created. The following
illustration shows the state before and after it is run through a reducers tree and highlights the
changed nodes.

Chapter 9. Reducers 151

e
OO @ Q
/\ /' \ /\ /' \
OO Oe

\ /' \

RN

Example of changing nodes

The main reason reference comparison is used is that this method ensures that each reference to the
previous state is kept coherent. We can examine it at any time and get the state exactly as it was
before a change. If we create an array and push the current state into it before running actions, we
will be able to pick any of the pointers to the previous state in the array and see the state tree exactly
as it was before all the subsequent actions happened. And no matter how many more actions we
process, our original pointers stay exactly as they were.

This might sound similar to copying the state each time before changing it, but the reference system
will not require 10 times the memory for 10 states. It will smartly reuse all the unchanged nodes.
Consider the next illustration, where two different actions have been run on the state, and how the
three trees look afterward.

Chapter 9. Reducers 152

STATE #1 ——>> STATE #1 =3 STATE #3
ACTION ACTION

a /\ N

Example of saving references

The first action added a new node, C3, under B1. If we look closely we can see that the reducer
didn’t change anything in the original A tree. It only created a new A’ object that holds B2 and a
new B1’ that holds the original C1 and C2 and the new C3’. At this point we can still use the A tree
and have access to all the nodes like they were before. What’s more, the new A’ tree didn’t copy the
old one, but only created some new links that allow efficient memory reuse.

The next action modified something in the B2 subtree. Again, the only change is a new A” root
object that points to the previous B1” and the new B2’. The old states of A and A’ are still intact and
memory is reused between all three trees.

Since we have a coherent version of each previous state, we can implement nifty features like undo
and redo (we simply save the previous state in an array and, in the case of “undo,” make it the current
one). We can also implement more advanced features like “time travel,” where we can easily jump
between versions of our state for debugging.

What Is Immutability?

The ideas we just discussed are the root of the concept of immutability. If you are familiar with
immutability in JavaScript, feel free to skip the remainder of this discussion and proceed to the
“Ensuring Immutability” section.

Let’s define what the word mutation means. In JavaScript, there are two types of variables: ones
that are copied by value, and ones that are passed by reference. Primitive values such as numbers,
strings, and booleans are copied when you assign them to other variables, and a change to the target
variable will not affect the source:

<N O O B W N =

< O O b W N -

Chapter 9. Reducers 153

Primitive values example

let string = "Hello";
let copiedString = string;

copiedString += " World!";

console.log(string); // => "Hello"
console. log(copiedString); => "Hello World!"

In contrast, collections in JavaScript aren’t copied when you assign them; they only receive a pointer
to the location in memory of the object pointed to by the source variable. This means that any change
to the new variable will modify the same memory location, which is pointed to by both the old and
new variables:

Collections example

const object = {};
const referencedObject = object;

referencedObject.number = 42;

4

console.log(object); // => { number: 42 }
console. log(referencedObject); // => { number: 42 }

As you can see, the original object is changed when we change the copy. We used const here to
emphasize that a constant in JavaScript holds only a pointer to the object, not its value, and no error
will be thrown if you change the properties of the object (or the contents of an array). This is also
true for collections passed as arguments to functions, as what is being passed is the reference and
not the value itself.

Luckily for us, ES2016 lets us avoid mutations for collections in a much cleaner way than before,
thanks to the Object.assign() method and the spread operator.

The spread operator is fully supported by the ES2016 standard. More information is
available on MDN?.

*$https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

© 00 N O U b W N =

Y
(]

Chapter 9. Reducers 154

Objects

Object.assign() can be used to copy all the key/value pairs of one or more source objects into one
target object. The method receives the following parameters:

1. The target object to copy to
2. One or more source objects to copy from

0 Complete Object.assign() documentation is available on MDN?.

Since our reducers need to create a new object and make some changes to it, we will pass a new
empty object as the first parameter to Object.assign(). The second parameter will be the original
subtree to copy and the third will contain any changes we want to make to the object. This will
result in us always having a fresh object with a new reference, having all the key/value pairs from
the original state and any overrides needed by the current action:

Example of Object.assign()

function reduce(state, action) {
const overrides = { price: 0 };

return Object.assign({}, state, overrides);

const state = { ... };

const newState = reducer(state, action);

state === newState; // false!

Deleting properties can be done in a similar way using ES2016 syntax. To delete the key name from
our state we can use the following:

Example of deleting a key from an object

return Object.assign({}, state, { name: undefined });

Arrays

Arrays are a bit trickier, since they have multiple methods for adding and removing values. In
general, you just have to remember which methods create a new copy of the array and which change
the original one. For your convenience, here is a table outlining the basic array methods.

*https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

O O b W N =~

Chapter 9. Reducers 155

Mutating arrays

Safe methods Mutating methods
concat() push()
slice() splice()
map () pop()
reduce() shift()
reduceRight() unshift()
filter() fill()

reverse()

sort()

The basic array operations we will be doing in most reducers are appending, deleting, and modifying
an array. To keep to the immutability principles, we can achieve these using the following methods:

Adding items to an array with ES2016

function reducer(state, action) {
return state.concat(newValue);

Removing items from an array with ES2016

function reducer(state, action) {
return state.filter(item => item.id !== action.payload);

Changing items in an array with ES2016

function reducer(state, action) {
return state.map((item) => item.id !== action.payload
7 item
. Object.assign({}, item, { favorite: action.payload }

)

Ensuring Immutability

The bitter truth is that in teams with more than one developer, we can’t always rely on everyone
avoiding state mutations all the time. As humans, we make mistakes, and even with the strictest pull
request, code review, and testing practices, sometimes they crawl into the code base. Fortunately,

Chapter 9. Reducers 156

there are a number of methods and tools that strive to protect developers from these hard-to-find
bugs.

One approach is to use libraries like deep-freeze*® that will throw errors every time someone tries
to mutate a “frozen” object. While JavaScript provides an Object . freeze() method, it freezes only
the object it is applied to, not its children. deep- freeze and similar libraries perform nested freezes
and method overrides to better catch such errors.

Another approach is to use libraries that manage truly immutable objects. While they add additional
dependencies to the project, they offer a number of benefits as well: they ensure true immutability,
offer cleaner syntax to update collections, support nested objects and provide performance improve-
ments on very large data sets.

The most common library is Facebook’s Immutable.js*!, which offers a number of key advantages
(in addition to many more advanced features):

Fast updates on very large objects and arrays
« Lazy sequences

Additional data types not available in plain JavaScript
« Convenient methods for deep mutation of trees
Batched updates

It also has a few disadvantages:

+ Additional large dependency for the project
« Requires the use of custom getters and setters to access the data
» Might degrade performance where large structures are not used

It is important to carefully consider your state tree before choosing an immutable library. The
performance gains might only become perceptible for a small percentage of the project, and the
library will require all of the developers to understand a new access syntax and collection of methods.

Another library in this space is seamless-immutable*?, which is smaller, works on plain JavaScript
objects, and treats immutable objects the same way as regular JavaScript objects (though it has
similar convenient setters to Immutable.js). Its author has written a great post** where he describes
some of the issues he had with Immutable.js and what his reasoning was for creating a smaller
library.

0 seamless-immutable does not offer many of the advantages of Immutable.js (sequences,
batching, smart underlying data structures, etc.), and you can’t use advanced ES2016 data
structures with it, such as Map, Set, WeakMap, and WeakSet.

“Chttps://www.npmjs.com/package/deep-freeze

“Thttps://facebook.github.io/immutable-js/

“’https://github.com/rtfeldman/seamless-immutable
“*http://tech.noredink.com/post/107617838018/switching-from-immutablejs-to-seamless-immutable

https://www.npmjs.com/package/deep-freeze
https://facebook.github.io/immutable-js/
https://github.com/rtfeldman/seamless-immutable
http://tech.noredink.com/post/107617838018/switching-from-immutablejs-to-seamless-immutable
https://www.npmjs.com/package/deep-freeze
https://facebook.github.io/immutable-js/
https://github.com/rtfeldman/seamless-immutable
http://tech.noredink.com/post/107617838018/switching-from-immutablejs-to-seamless-immutable

O O b W N

© 00 N O U b W N =

Chapter 9. Reducers 157

The last approach is to use special helper functions that can receive a regular object and an
instruction on how to change it and return a new object as a result. There is such an immutability
helper** named update(). Its syntax might look a bit weird, but if you don’t want to work with
immutable objects and clog object prototypes with new functions, it might be a good option.

Example of using the update() function

import update from 'immutability-helper';

const newData = update(myData, {
x: {y: {z: { $set: 7 }}},
a: { b: { $push: [9] }}

1)

Higher-Order Reducers

The power of Redux is that it allows you to solve complex problems using functional programming.
One approach is to use higher-order functions. Since reducers are nothing more than pure functions,
we can wrap them in other functions and create very simple solutions for very complicated problems.

There are a few good examples of using higher-order reducers—for example, for implementing
undo/redo functionality. There is a library called redux-undo* that takes your reducer and enhances
it with undo functionality. It creates three substates: past, present, and future. Every time your
reducer creates a new state, the previous one is pushed to the past states array and the new one
becomes the present state. You can then use special actions to undo, redo, or reset the present state.

Using a higher-order reducer is as simple as passing your reducer into an imported function:

Using a higher-order reducer

import { combineReducers } from 'redux';

import recipesReducer from 'reducers/recipes’;

import ingredientsReducer from 'reducers/ingredients’;
import undoable from 'redux-undo';

const rootReducer = combineReducers({
recipes: undoable(recipesReducer),
ingredients: ingredientsReducer

});

“*https://github.com/kolodny/immutability-helper
“Shttps://github.com/omnidan/redux-undo

https://github.com/kolodny/immutability-helper
https://github.com/kolodny/immutability-helper
https://github.com/omnidan/redux-undo
https://github.com/kolodny/immutability-helper
https://github.com/omnidan/redux-undo

© 00 < O U b W N =

[N
(]

Chapter 9. Reducers 158

Another example of a higher-order reducer is redux-ignore*. This library allows your reducers to
immediately return the current state without handling the passed action, or to handle only a defined
subset of actions.

The following example will disable removing recipes from our recipe book. You might even use it
to filter allowed actions based on user roles:

Using the ignoreActions() higher-order reducer

import { combineReducers } from 'redux';

import recipesReducer from 'reducers/recipes’;

import ingredientsReducer from 'reducers/ingredients';
import { ignoreActions } from 'redux-ignore’;

import { REMOVE_RECIPE } from 'constants/action-types';

const rootReducer = combineReducers({
recipes: ignoreActions(recipesReducer, [REMOVE_RECIPE])
ingredients: ingredientsReducer

1)

Testing Reducers

The fact that reducers are just pure functions allows us to write small and concise tests for them. To
test a reducer we need to define an initial state, an action and the state we expect to have. Calling
the reducer with the first two should always produce the expected state.

This idea works best when we avoid a lot of logic and control flow in reducers.

Two things that are often forgotten while testing reducers are testing unknown actions and
ensuring the immutability of initial and expected objects.

Summary

In this chapter we learned about the part of Redux responsible for changing the application
state. Reducers are meant to be pure functions that should never mutate the state or make any
asynchronous calls. We also learned how to avoid and catch mutations in JavaScript.

In the next and final chapter, we are going to talk about middleware, the most powerful entity
provided by Redux. When used wisely, middleware can reduce a lot of code and let us handle very
complicated scenarios with ease.

“Shttps://github.com/omnidan/redux-ignore

https://github.com/omnidan/redux-ignore
https://github.com/omnidan/redux-ignore

Chapter 10. Middleware

Middleware are one of Redux’s most powerful concepts and will hold the bulk of our application’s
logic and generic service code.

To understand the concept of middleware, it’s best first to examine the regular data flow in Redux.
Any action dispatched to the store is passed to the root reducer together with the current state to
generate a new one. The concept of middleware allows us to add code that will run before the action
is passed to the reducer.

In essence, we can monitor all the actions being sent to the Redux store and execute arbitrary code
before allowing an action to continue to the reducers. Multiple middleware can be added in a chain,
thus allowing each to run its own logic, one after another, before letting the action pass through.
The basic structure of a middleware is as follows:

Basic structure of a middleware

const myMiddleware = ({ getState, dispatch }) => next => action => {
next(action);

};

This declaration might seem confusing, but it should become clear once it’s examined step by step. At
its base, a middleware is a function that receives from Redux an object that contains the getState()
and dispatch() functions. The middleware returns back a function that receives next () and in turn
returns another function that receives action and finally contains our custom middleware code.

0 From the user’s perspective, a simple const myMiddleware = ({ getState, dispatch,
next, action }) => {} might have seemed sufficient. The more complicated structure is
due to Redux internals.

The getState() and dispatch() methods should be familiar as they are APIs from the Redux store.
The action parameter is the current Redux action being passed to the store. Only the next () function
should look unfamiliar at this point.

0 It is sometimes incorrectly noted in teaching material that the parameter passed to the
middleware is store (as it appears to have getState() and dispatch()). In practice, it’s
an object holding only those two APIs and not the other APIs exported by the Redux store.

O &= W N =

Chapter 10. Middleware 160

Understanding next()

If we were to build our own implementation of a middleware, we would probably want the ability
to run code both before an action is passed to the reducers and after. One approach would be to
define two different callbacks for before and after.

Redux middleware takes a different approach and gives us the next() function. Calling it with an
action will cause it to propagate down the middleware chain, calling the root reducer and updating
the state of the store. This allows us to add code before and after passing the action to the reducers:

Example of code

const logMiddleware => ({ getState, dispatch }) => next => action => {
console.log("Before reducers have run");
next(action);
console.log("After the reducers have run");

};

This nifty trick gives us more power than might initially be apparent. Since we are responsible for
calling next () and passing it the action, we can choose to suppress next() in certain conditions or
even modify the current action before passing it on. Failing to call next (action) inside a middleware
will prevent the action from reaching the other middleware and the store.

Our First Middleware

To demonstrate the power of middleware, let’s build a special debug middleware that measures how
much time it takes for our reducers to process an action.

Folder Structure

A common approach is to keep all our middleware implementations in a middleware directory at
our application root (similar to reducers and actions). As our application grows, we might find
ourselves adding more subdirectories to organize the middleware, usually by functionality (utility
or authorization).

0 As with software and hardware, we use middleware as both the singular and the plural

form of the word. In some sources, including the code for applyMiddleware() shown in
Chapter 8, you may see middlewares used as the plural form.

The Measure Middleware

Our time measuring middleware looks like this:

< O O b W N =

O = W N =

O = W N =

Chapter 10. Middleware 161

middleware/measure.js

const measureMiddleware = () => next => action => {
console.time(action.type);
next(action);
console.timeEnd(action.type);

};

export default measureMiddleware;

To create this middleware we used the time() and timeEnd() console methods that record a
benchmark with the name provided as a string. We start the timing before running an action, using
the action.type as a name. Then, we tell the browser to print the timing after the action is done.
This way we can potentially catch poorly performing reducer implementations.

An interesting thing to note here is that this middleware completely ignores the first parameter (the
object holding getState() and dispatch()), as we simply don’t need it for our example.

Connecting to Redux

Adding a middleware to the Redux store can be done only during the store creation process:

Regular Redux store

import { createStore } from 'redux';
import reducer from 'reducers/root';

const store = createStore(reducer);

};

The simplest way to connect a middleware to the Redux store is to use the applyMiddleware() store
enhancer available as an API from Redux itself (store enhancers are explained in Chapter 8:

Create store and register the measureMiddleware

import { createStore, applyMiddleware } from 'redux';
import reducer from 'reducers/root';

import measureMiddleware from 'middleware/measure’;

const store = createStore(reducer, applyMiddleware(measureMiddleware));

The applyMiddleware() function can receive an arbitrary number of middleware as arguments and
create a chain to be connected to the store:

1

O© 00 9 O Ol b W N =

Chapter 10. Middleware 162

applyMiddleware(middlewareA, middlewareB, middlewareC);

Note that the order of registration is important. The first middleware, in our case
middlewareA, will get the action before middlewareB. And if the code there decides to
modify or suppress the action, it will never reach either middlewareB or middlewareC.

In real-world applications, you may prefer to apply some middleware only in development or pro-
duction environments. For example, our measureMiddleware might output unwanted information
in the live product, and an analyticsMiddleware might report false analytics in development.

Using the spread operator from ES2016, we can apply middleware to the store conditionally:

Conditionally apply middleware

const middleware = [apiMiddleware];

if (development) {
middleware.push(measureMiddleware);

} else {
middleware.push(analyticsMiddleware);

const store = createStore(reducer, applyMiddleware(...middleware));

Async Actions

What makes middleware so powerful is the access to both getState() and dispatch(), as these
functions allow a middleware to run asynchronous actions and give it full access to the store. A
very simple example would be an action debounce middleware. Suppose we have an autocomplete
field, and we want to prevent the AUTO_COMPLETE action from running as the user types in a search
term. We would probably want to wait 500ms for the user to type in part of the search string, and
then run the query with the latest value.

We can create a debounce middleware that will catch any action with the debounce key set in its
metadata and ensure it is delayed by that number of milliseconds. Any additional action of the same
type that is passed before the debounce timer expires will not be passed to reducers but only saved
as the “latest action” and executed once the debounce timer has expired:

[EEY

[EEY

, O O 0 N O O b W N =

, O O 0 9 O O b W N -

Chapter 10. Middleware

Debounce flow

163

Oms: dispatch({ type: 'AUTO_COMPLETE', payload:
// Suppressed

10ms: dispatch({ type: 'AUTO_COMPLETE', payload:
// Suppressed

20ms: dispatch({ type: 'AUTO_COMPLETE', payload:
// Suppressed

50ms :

'c', meta: { debounce: 50 }};

ca', meta: { debounce: 50 }};

'cat', meta: { debounce: 50 }};

// The action with payload 'cat' is dispatched by the middleware.

The skeleton of our middleware needs to inspect only actions that have the required debounce key

set in their metadata:

Debounce middleware skeleton

const debounceMiddleware = () => next => action => {

const { debounce } = action.meta || {};

if (!debounce) {
return next(action);

// TODO: Handle debouncing
¥

export default debounceMiddleware;

Since we want each action type to have a different debounce queue, we will create a pending object
that will hold information for each action type. In our case, we only need a handle to the latest

timeout for each action type:

0 N O O B~ W N -

B s |
<N O O WO N, OO O

=N O O & W N =

Chapter 10. Middleware 164

Saving latest debounced action object

// Object to hold debounced actions (referenced by action.type)
const pending = {};

const debounceMiddleware = () => next => action => {
const { debounce } = action.meta || {};

if (!debounce) {
return next(action);

if (pending[action.type]) {
clearTimeout(pending[action.type])

// Save latest action object
pending[action.type] = setTimeout(/* implement debounce */);

};

If there is already a pending action of this type, we cancel the timeout and create a new timeout
to handle this action. The previous one can be safely ignored—for example, in our case if an ac-
tion { type: 'AUTO_COMPLETE', payload: 'cat' } comes right after { type: 'AUTO_COMPLETE',
payload: 'ca' }, we can safely ignore the one with 'ca' and only call the autocomplete API for
'cat':

Timeout handler code

setTimeout (
()= A
delete pending[action.type];
next(action);

}I

debounce

);

Once the timeout for the latest action has elapsed, we clear the key from our pending object and
next () method to allow the last delayed action to finally pass through to the other middleware and
the store:

© 00 < O U b W N =

NN N N N S S L sy
B WO N PO © 0010 O b O N -~ O

Chapter 10. Middleware 165

Complete debounce middleware code

// Object to hold debounced actions (referenced by action.type)
const pending = {};

const debounceMiddleware = () => next => action => {
const { debounce } = action.meta || {};

if (!debounce) {
return next(action);

if (pending[action.type]) {
clearTimeout(pending[action.type]);

}

pending[action.type] = setTimeout(
()= {
delete pending[action.type];
next(action);

}/

debounce
)
};

export default debounceMiddleware;

With this basic middleware we have created a powerful tool for our developers. A simple meta
setting on an action can now support debouncing of any action in the system. We have also used
the middleware’s support for the next() method to selectively suppress actions. In the Server
Communication Chapter we will learn about more advanced uses of the async flow to handle generic
API requests.

Using Middleware for Flow Control

One important usage of middleware is for the control of application flow and logic. Let’s consider a
sample user login flow:

Send POST request to server to log in Save access token in store Fetch current user’s profile
information Fetch latest notifications

Usually our flow will begin with a 'LOGIN' action containing the login credentials:

N O O & W N =

W N -

W N O O & W N =

Chapter 10. Middleware 166

Example of a login action
{
type: 'LOGIN',
payload: {

email: 'info@redux-book.com',
password: 'will-never-tell’

After our access to the server completes successfully, another action will typically be dispatched,
similar to:

Successful login action

{
type: 'SUCCESSFUL_LOGIN',

payload: 'access_token'

One of the reducers will make sure to update the access token in the state, but it is unclear who
is responsible for issuing the two additional actions required: 'FETCH_USER_INFO' and 'FETCH_-
NOTIFICATIONS'.

We could always use complex action creators and the redux-thunk middleware in our login action
creator:

Sample complex login action creator

const login = (email, password) => dispatch => {
postToServer('login', { email, password })
.then((response) => {
dispatch(successfullLogin(response.accessToken));
dispatch(fetchUserInfo());
dispatch(fetchNotifications());
});
4

But this might cause a code reuse problem. If in the future we want to support Facebook Connect, it
will require a different action altogether, which will still need to include the calls to ' FETCH_USER_-
INFO' and 'FETCH_NOTIFICATIONS'. And if in the future we change the login flow, it will need to be
updated in multiple places.

A simple solution to the problem is to cause the two actions to be dispatched only after the login is
successful. In the regular Redux flow, there is only one actor that can listen for and react to events—
the middleware:

Chapter 10. Middleware 167

Login flow middleware

const loginFlowMiddleware = ({ dispatch }) => next => action => {
// Let the reducer save the access token in the state
next(action);

if (action.type === SUCCESSFUL_LOGIN) {
dispatch(fetchUserInfo());
dispatch(fetchNotifications());
}
4

Our new code holds the flow in a single place and will allow us to easily support login via Twitter,
Google Apps, and more.

In practice we can combine flows together and add conditions and more complicated logic, as we
have full access to both dispatch() and getState().

There are a few external libraries that try to make flow management easier, such as

redux-saga®’.

Other Action Types

When learning the basics of Redux, developers are usually taught that actions in Redux can only
be objects and they must contain the 'type' key. In practice, reading this book and online material,
you’ll notice Error objects, functions, and promises being passed to dispatch().

The underlying rule is simple: our root reducer requires an object as an action, but our middleware
have no such limits and are free to handle any type of data passed to dispatch().

Try running dispatch(null). You should get an error from Redux similar to:

Passing a non-object to dispatch

store.dispatch(null);
> Uncaught TypeError: Cannot read property 'type' of null(...)

To add support for null we can create our own nullMiddleware:

“"https://github.com/yelouafi/redux-saga

https://github.com/yelouafi/redux-saga
https://github.com/yelouafi/redux-saga

<N O O B W N =

Chapter 10. Middleware 168

Simple null middleware

const nullMiddleware = () => next => action => {
next(action !== null ? action : { type: 'UNKNOWN' });
}s

In this middleware we catch any attempt to send null instead of the action object and dispatch()
a fake { type: 'UNKNOWN' } instead. While this middleware has no practical value, it should be
apparent how we can use the middleware’s power to change actions to support any input type.

The famous redux-thunk*® middleware is in essence the following code:

Simplified redux-thunk

const thunkMiddleware = ({ dispatch, getState }) => next => action => {
if (typeof action === 'function') {
return action(dispatch, getState);
}

return next(action);

};

It checks if the action passed is ' function' instead of the regular object, and if it is a function it
“calls” it, passing dispatch() and getState().

A similar approach is used by other helper middleware that know how to accept the following, and
more:

« Promises (e.g., dispatch a regular action when resolved)
« Error objects (e.g., report errors)
« Arrays (e.g., execute a list of actions provided in parallel or sequentially)

Difference Between next() and dispatch()

A common point of confusion is the difference between the next () and dispatch() functions passed
to the middleware. While both accept an action, they follow a different flow in Redux.

Calling next() within a middleware will pass the action along the middleware chain (from the
current middleware) down to the reducer. Calling dispatch() will start the action flow from the
beginning (the first middleware in the chain), so it will eventually reach the current one as well.

“®https://github.com/gaearon/redux-thunk

https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk

<N O O B W N =

O b W N =

Chapter 10. Middleware 169

Store setup

createStore(reducer,
applyMiddleware(
middlewareA,
middlewareB,
middlewareC

Calling next(action) within middlewareB will cause the action to be passed to middlewareC and
then the reducer.

Calling dispatch(action) within middlewareB will cause the action to be passed to middlewareA,
then middlewareB, then middlewareC, and finally to the reducer, returning the execution back to
middlewareB.

Calling dispatch() multiple times is a common and valid practice. next() can also be called more
than once, but this is not recommended as any action passed to next() will skip the middleware
before the current one (for example, potentially skipping the logging middleware).

Parameter-Based Middleware

Beyond the middleware we’ve discussed so far in this chapter, some middleware might be reusable
and support parameters being passed during their creation.

For example, consider the nul1Middleware we created earlier in this chapter:

Simple null middleware

const nullMiddleware = () => next => action => {
next(action !== null ? action : { type: 'UNKNOWN' });
1

export default nullMiddleware;

The "UNKNOWN' key is hardcoded into our middleware and will not allow easy reuse in our other
projects. To make this middleware more generic, we might want to be able to support arbitrary action
types and use the applyMiddleware() stage to specify how we want our middleware to behave:

O O b W N =~

O = W N =

Chapter 10. Middleware 170

Customizable middleware

import { createStore, applyMiddleware } from 'redux';
import reducer from 'reducers/root';

import nullMiddleware from 'middleware/null’;

const store = createStore(reduce, applyMiddleware(nullMiddleware('OH_NO'));

};

Here we want our nul1Middleware to dispatch 'OH_NO' instead of the default ' UNKNOWN'. To support
this we must turn our middleware into a “middleware creator™:

Null middleware creator

const nullMiddlewareCreator = param => store => next => action => {
next(action !== null ? action : { type: param || "UNKNOWN' });
}s

export default nullMiddlewareCreator;

Now instead of returning the middleware directly, we return a function that creates a middleware
with custom parameters passed in.

This behavior can be further extended and allow for creation of complex middleware as libraries
that can be easily customized when added to the store.

How Are Middleware Used?

In real-life applications, middleware are often where most of the logic and complex code resides.
They also hold most of the utility functionality, such as logging, error reporting, analytics,
authorization, and more. Many of the enhancement libraries used in this book require the addition
of their custom middleware to the chain in order to support their functionality.

There is a long list of open source projects that implement various useful middleware. A few
examples are:

o redux-analytics®’
+ redux-thunk®

o redux-logger”!

“’https://github.com/markdalgleish/redux-analytics
https://github.com/gaearon/redux-thunk
*thttps://github.com/fcomb/redux-logger

https://github.com/markdalgleish/redux-analytics
https://github.com/gaearon/redux-thunk
https://github.com/fcomb/redux-logger
https://github.com/markdalgleish/redux-analytics
https://github.com/gaearon/redux-thunk
https://github.com/fcomb/redux-logger

Chapter 10. Middleware 171

Summary

Middleware are an exceptionally versatile and useful part of Redux, and they are commonly used
to hold the most complicated and generic parts of an application. They have access to the current
action, to the store, and to the dispatch() method, giving them more power than any other part of
Redux.

Our exploration of advanced Redux concepts ends here. In the next section you will find links to
materials for further reading and learning. Thank you for reading our book, and don’t forget to send
us your feedback at info@redux-book.com. Happy coding!

Further Reading

Despite its small size, the Redux library has had a huge effect on the way developers handle data
management in single-page applications. It’s already used in many large production applications
and has grown a large ecosystem around itself.

Today, there are a lot of great materials about Redux all over the Internet. This book attempts to
group together all the best practices for real-world use of Redux and show how to use it correctly
in large applications. But since the web world is constantly moving forward, it is always good to
keep up to date and explore new libraries and methods. In this section of the book, we would like to
mention some good Redux-related sources for further learning.

Resource Repositories

The Redux repository on GitHub has an Ecosystem documentation section®> where you’ll find a
curated list of Redux-related tools and resources.

There is also a less curated (and thus much larger) resource catalog managed by the community
called Awesome Redux”. This repository contains a good amount of resources related to using Redux
with different libraries such as Angular, Vue, Polymer, and others.

If you are looking for more React/Redux-focused material, Mark Erikson®* maintains a resource
repository called React/Redux Links*’. The materials there are separated by difficulty level, and a
broad range of topics are covered (state management, performance, forms, and many others).

The same author also maintains a more Redux-focused resource list called Redux Ecosystem Links,
which has a similar structure.

Useful Libraries

The Redux ecosystem now includes dozens (if not hundreds) of useful libraries that complement
or extend its features. Here’s a short list of libraries that have gained widespread popularity and
are strongly recommended for use in large Redux projects—we recommend that you check out the
source code of these libraries to get a deeper understanding of the extensibility of Redux:

*?https://github.com/reactjs/redux/blob/master/docs/introduction/Ecosystem.md
*https://github.com/xgrommx/awesome-redux
*https://github.com/markerikson
**https://github.com/markerikson/react-redux-links
>Shttps://github.com/markerikson/redux-ecosystem-links

https://github.com/reactjs/redux/blob/master/docs/introduction/Ecosystem.md
https://github.com/xgrommx/awesome-redux
https://github.com/markerikson
https://github.com/markerikson/react-redux-links
https://github.com/markerikson/redux-ecosystem-links
https://github.com/reactjs/redux/blob/master/docs/introduction/Ecosystem.md
https://github.com/xgrommx/awesome-redux
https://github.com/markerikson
https://github.com/markerikson/react-redux-links
https://github.com/markerikson/redux-ecosystem-links

Further Reading 173

reselect”’

If you count the Redux store as a client-side database of your application, you can definitely count
selectors as queries to that database. reselect allows you to create and manage composable and
efficient selectors, which are crucial in any large application.

redux-actions®®

Written by Redux cocreator Andrew Clark®?, this library can reduce the amount of boilerplate code
you need to write when working with action creators and reducers. We find it particularly useful
for writing reducers in a more ES2016 fashion, instead of using large switch statements.

redux-undo®®

If you ever need to implement undo/redo/reset functionality in some parts of your application, we
recommend using this awesome library. It provides a higher-order reducer that can relatively easily
extend your existing reducers to support action history.

redux-logger®’

redux-logger is a highly configurable middleware for logging Redux actions, including the state
before and after the action, in the browser console. It should only be used in development. Our advice
is to use the collapsed: true option to make the console output more readable and manageable.

redux-localstorage®’

This reasonably simple store enhancer enables persisting and rehydrating parts of the store in the
browser’s localStorage. It does not support other storage implementations, such as sessionStor-
age. Beware that localStorage isn’t supported in private mode in some browsers and always check
its performance in large applications.

Courses and Tutorials

“Getting Started with Redux”* is a great free video course by Redux cocreator Dan Abramov, where
he implements Redux from scratch and shows how to start using it with React]S.

Learn Redux® is a free screensact series by Wes Bos. You can follow along with the series to build
a simple photo app using React and Redux.

Finally, the official Redux documentation® is a truly great resource: a well-maintained, constantly
improving source of knowledge for this tiny yet powerful library.

"https://github.com/reactjs/reselect
8https://github.com/acdlite/redux-actions
**https://github.com/acdlite
*https://github.com/omnidan/redux-undo
“thttps://github.com/evgenyrodionov/redux-logger
Zhttps://www.npmjs.com/package/redux-localstorage
“https://egghead.io/courses/getting-started-with-redux
“*https://learnredux.com/

*http://redux.js.org/

https://github.com/reactjs/reselect
https://github.com/acdlite/redux-actions
https://github.com/acdlite
https://github.com/omnidan/redux-undo
https://github.com/evgenyrodionov/redux-logger
https://www.npmjs.com/package/redux-localstorage
https://egghead.io/courses/getting-started-with-redux
https://learnredux.com/
http://redux.js.org/
https://github.com/reactjs/reselect
https://github.com/acdlite/redux-actions
https://github.com/acdlite
https://github.com/omnidan/redux-undo
https://github.com/evgenyrodionov/redux-logger
https://www.npmjs.com/package/redux-localstorage
https://egghead.io/courses/getting-started-with-redux
https://learnredux.com/
http://redux.js.org/

	Table of Contents
	Should I Read This Book?
	How to Read This Book
	Acknowledgements
	Code Repository
	Part 1. Introduction to Redux
	Chapter 1. Core Concepts of Flux and Redux
	What Is Flux?
	Redux and Flux
	Redux Terminology
	General Concepts
	Redux and React
	Basic Redux Implementation
	Summary

	Chapter 2. Your First Redux Application
	Starter Project
	Our First Application
	Setting Up the Store
	Adding Recipes
	Adding Ingredients
	Structuring the Code
	A Closer Look at Reducers
	Handling Typos and Duplicates
	Simple UI
	Logging
	Getting Data from the Server
	Summary

	Part 2. Real World Usage
	Chapter 3. State Management
	The Concept of Separation
	State as a Database
	Keeping a Normalized State
	Persisting State
	Real-World State
	Summary

	Chapter 4. Server Communication
	Using Promises in Action Creators
	API Middleware
	Moving Code from Action Creators
	Using the API Middleware
	Error Handling
	Loading Indicator (Spinner)
	Dynamic Action Types
	Authentication
	More Extensions
	Chaining APIs
	Canceling API Requests
	Summary

	Chapter 5. WebSockets
	Basic Architecture
	Redux Link
	Code Implementation
	Complete WebSocket Middleware Code
	Authentication
	Summary

	Chapter 6. Tests
	Test Files and Directories
	Testing Action Creators
	Async Action Creators
	Reducer Tests
	Testing Middleware
	Integration Tests
	Summary

	Part 3. Advanced Concepts
	Chapter 7. The Store
	Creating a Store
	Decorating the Store
	Summary

	Chapter 8. Actions and Action Creators
	Passing Parameters to Actions
	Action Creators
	Flux Standard Actions
	String Constants
	Testing Action Creators
	redux-thunk
	redux-actions
	Summary

	Chapter 9. Reducers
	Reducers in Practice
	Avoiding Mutations
	Ensuring Immutability
	Higher-Order Reducers
	Testing Reducers
	Summary

	Chapter 10. Middleware
	Understanding next()
	Our First Middleware
	Async Actions
	Using Middleware for Flow Control
	Other Action Types
	Difference Between next() and dispatch()
	Parameter-Based Middleware
	How Are Middleware Used?
	Summary

	Further Reading
	Resource Repositories
	Useful Libraries
	Courses and Tutorials

